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Capacity Bounds on MIMO Relay Channel With
Covariance Feedback at the Transmitters
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Abstract—In this paper, the source and relay transmit covari-
ance matrices are jointly optimized for a fading multiple-antenna
relay channel when the transmitters only have partial channel
state information (CSI) in the form of covariance feedback. For
both full-duplex and half-duplex transmissions, we evaluate lower
and upper bounds on the ergodic channel capacity. These bounds
require a joint optimization over the source and relay transmit co-
variance matrices. The methods utilized in the previous literature
cannot handle this joint optimization over the transmit covariance
matrices for the system model considered in this paper. Therefore,
we utilize matrix differential calculus and propose iterative algo-
rithms that find the transmit covariance matrices to solve the joint
optimization problem. In this method, there is no need to specify
first the eigenvectors of the transmit covariance matrices. The al-
gorithm updates both the eigenvectors and the eigenvalues at each
iteration. Through simulations, we observe that lower and upper
bounds are close to each other. However, the distance between
the lower and upper bounds depends on the channel conditions.
If the mutual information on the source-to-relay channel and the
broadcast channel get closer to each other, the bounds on capacity
also get closer.

Index Terms—Covariance feedback, full duplex, half-duplex,
multiple-input–multiple-output (MIMO) relay, optimum power
allocation, partial channel state information (CSI).

I. INTRODUCTION

U TILIZING multiple antennas at the transmit and receive
terminals of wireless communication systems has been

shown to increase spectral efficiency [1]. In addition, applying
cooperative strategies such as adding a relay node to the system
can further increase capacity [2]. On the other hand, the ex-
act description of the multiple-input–multiple-output (MIMO)
relay channel capacity is still an open problem. Several achiev-
able schemes, such as decode-and-forward (DF), amplify-and-
forward, and compress-and-forward schemes, can be used as
lower bounds to the capacity of MIMO relay channels, whereas
the cut-set theorem provides a valid upper bound.

For single-antenna fading relay channels, capacity bounds
and power allocations are given in [3] for both full-duplex
and half-duplex transmissions, where perfect channel state
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information (CSI) is available everywhere. A similar setting
with individual power constraints at the source and the relay
is considered in [4], where a max–min type of solution is also
introduced. In [5], MIMO relay channels with different fading
assumptions are discussed when only the receivers have the
perfect CSI. For full-duplex, fading MIMO relay channels, a
capacity upper bound, and a DF achievable rate are found in
[6], where only the receivers know the perfect CSI, and the
transmitters do not know the channel.

A more practical channel model, for which the receivers
have the perfect CSI and the transmitters have partial CSI, was
utilized for point-to-point MIMO and MIMO multiple-access
channels (MACs) in [7]–[9]. In both of these channels, it is
possible to find the eigenvectors of the transmit covariance ma-
trices in closed form, and solve a reduced optimization problem
over the eigenvalues of the transmit covariance matrices, using
an iterative algorithm [8], [9]. However, in relay channels, it
is not always possible to find a closed-form expression for the
eigenvectors of the transmit covariance matrices. One solution
that we offered to this problem was to choose the eigenvectors
of the transmit covariance matrices similar to point-to-point
channels [10]. However, this choice is clearly suboptimal.
Therefore, here, we propose a new method for solving the
transmit covariance matrices directly (i.e., without needing to
find the eigenvectors first).

In this method, matrix differential calculus [11] is extremely
functional since it offers a new way for optimizing rate expres-
sions by taking derivatives of scalar functions with respect to
matrix variables (transmit covariance matrices). This eliminates
the need for calculating cumbersome partial differentials that
need to be taken with respect to the eigenvalues of matrix
variables. By using matrix differential calculus, the resulting
iterative algorithm updates the entire matrix at once at each
iteration.

In this paper, we consider both full-duplex and half-duplex
MIMO relay channels where the transmitters have partial CSI in
the form of covariance feedback. The source and relay terminals
have individual power constraints. We evaluate the DF lower
bound and the cut-set upper bound on the channel capacity that
are given in terms of max–min-type optimization problems over
the source and relay transmit covariance matrices. The main
contribution of this paper is to find the transmit covariance
matrices that satisfy the lower and upper bound optimization
problems. We solve these joint optimization problems using
techniques from [4] as well as by using matrix differential
calculus [11]. The solutions to the optimization problems are in
terms of iterative algorithms that find the transmit covariance
matrices directly (i.e., without first finding the eigenvectors
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Fig. 1. MIMO relay channel.

and then calculating the eigenvalues). Through simulations, we
show that the proposed algorithms converge, regardless of the
initial points. Moreover, we observe that, for certain channel
covariance matrix settings, lower and upper bounds meet to give
the exact capacity.

The following notation is adopted throughout this paper:
upper (lower) boldface letters are used to denote matrices (col-
umn vectors). Superscript (·)† stand for the conjugate-transpose
operation. We employ E[·] to denote expectation with respect
to all random variables within the brackets. Operators tr(·) and
| · | represent the matrix trace and determinant, respectively.

II. SYSTEM MODEL

Consider a relay channel with source, relay, and destination
terminals (see Fig. 1), where the channel between a transmitter
and a receiver is represented by random matrix Hxy , whose
elements are complex Gaussian random variables resulting in a
Rayleigh fading channel. Dimensions of the channel matrix are
the number of receive antennas times the number of transmit
antennas. In the case that the receiver has the perfect CSI and
the transmitter has only statistical knowledge of channel in
terms of covariance feedback, there is a correlation between the
signals transmitted by or received at different antenna elements.
This channel model is defined as [12]

Hxy = Φ1/2
xy ZxyΣ

1/2
xy (1)

where subscript xy refers to either sr (source to relay), sd
(source to destination), or rd (relay to destination); Zxy is a
zero-mean identity covariance random channel matrix; Σxy is
the correlation matrix between the signals transmitted from
the antennas on the transmitter; and Φxy is the correlation
matrix between the signals received at the antennas on the
receiver. Similar to [9], in this paper, we will assume that
the receivers do not have any physical restrictions; therefore,
there is sufficient spacing between the antenna elements on
the receivers such that the signals received at different antenna
elements are uncorrelated.1 As a result, the receive-antenna
correlation matrix becomes the identity matrix, i.e., Φxy = I.
Now, the channel model can be written as

Hxy = ZxyΣ
1/2
xy . (2)

1Our results can be extended to the case where the channel has double-sided
correlation structure (i.e., to the case where the signals arriving at the receiver
are also correlated) as in [8]. However, this extension is omitted in this paper.

When the relay is allowed to transmit and receive at the same
time, the channel is said to be in full-duplex mode. In this case,
received signals at the relay and the destination are given as

r = Hsrxs + nr, y = Hsdxs +Hrdxr + ny (3)

where r is Nr long received vector at the relay, y is Nd long
received vector at the destination, xs is an Ms long transmitted
signal from the source, and xr is an Mr long transmitted signal
from the relay. The covariance matrices of the transmitted
signals are Qs = E[xsx

†
s] and Qr = E[xrx

†
r], and there are

individual power constraints on the source and relay transmit
covariance matrices. Noise vectors at the relay, i.e., nr, and
at the destination, i.e., ny are zero-mean identity covariance
complex Gaussian random vectors.

In half-duplex transmission, the relay cannot transmit and
receive signals simultaneously. Therefore, one transmission
frame is divided into two phases. Correspondingly, source input
is also divided into two parts. In the first phase, the relay
behaves as a receiver only, and the source transmits the first
part of its input x(1)

s . In this phase, the received signals at the
relay and destination are

r = Hsrx
(1)
s + nr, y1 = Hsdx

(1)
s + n(1)

y (4)

where the covariance matrix of x(1)
s is Q(1)

s = E[x
(1)
s x

(1)
s

†
]. In

the second phase, the relay behaves as a transmitter. The source
transmits the second part of its input x(2)

s and the relay transmits
xr. In this phase, the received signal at the destination is

y2 = Hsdx
(2)
s +Hrdxr + n(2)

y (5)

where the covariance matrix of x
(2)
s is Q

(2)
s = E[x

(2)
s x

(2)
s

†
],

and the noise vectors at the destination, i.e., n(1)
y and n

(2)
y ,

are zero-mean identity covariance complex Gaussian random
vectors.

III. MATRIX DIFFERENTIAL CALCULUS

Here, we introduce the matrix differential calculus [11] that
will be useful later. We start by defining the “differential” of
a scalar function. Let φ : R → R be a real-valued function.
The differential is the linear part of the increment of the value
of a function, i.e., φ(x+ u)− φ(x), at a fixed-point x with
increment u. The derivative of function φ at point x is found
by dividing the differential of the function with increment u,
and by taking the limit as u goes to 0, i.e.,

φ′(x) = lim
u→0

φ(x+ u)− φ(x)

u
.

The differential is denoted by dφ(x;u), and it is equal to
dφ(x;u) = uφ′(x). Similarly, let f : Rn → R

m be a vector-
valued function, and x, u ∈ R

n. The differential of f is defined
as df(x;u) = A(x)u, where m× n-dimensional matrix A(x)
is called the first derivative of f at x. It is important to note
here that, while the differential of a vector-valued function is a
vector, the derivative of a vector-valued function is a matrix.
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Since dealing with a matrix is cumbersome, partial deriva-
tives are often used in optimization problems involving vector-
valued functions. In fact, as the first identification theorem in
[11] states, the elements of m× n matrix A(x) are the partial
derivatives of f evaluated at x, and A(x) is called the Jacobian
matrix of f , i.e., Df(x) = A(x). As a result of this, if f is
differentiable at x and we have found a differential df at x,
then the value of the partial derivatives at x can be immediately
determined.

Finally, the differential of a matrix-valued function can
be determined using the vector representation of matrices.
Let F : Rn×q → R

m×p be a matrix function and differen-
tiable at X ∈ R

n×q . Then, the differential can be written as
vecdF (X;U) = A(X)vecU, where the Jacobian is an mp×
nq matrix DF (X) = A(X).

Given matrix function F (X), determining the derivative of
this function from its differential is carried out as follows:
1) Compute the differential of F (X); 2) vectorize the latter
result to obtain d vec F (X) = A(X)d vec X; and 3) conclude
that DF (X) = A(X). In this paper, we mainly deal with scalar
functions φ : Rn×q → R of matrix variables. In this case, the
derivative can be written as

Dφ(X) =
∂φ(X)

∂(vec XT )
. (6)

However, the idea of arranging the partial derivatives of φ(X)
into a matrix (rather than a vector) is appealing and sometimes
useful; therefore, with a slight abuse of notation, we will use

Dφ(X) =
∂φ(X)

∂X
. (7)

For scalar functions of the matrix variable, the differential
of φ(X) is given as [11] dφ = (vecA)T d vec X, which is
also equal to dφ = tr(AT dX), where the Jacobian matrix is
obtained as Dφ(X) = (∂φ(X)/∂X) = A.

Using this, we now give some important differentials that
will be useful later. Differential of tr(X) with respect to X can
be calculated as d tr(X) = tr(dX). Therefore, the derivative of
tr(X) is Dtr(X) = I. Given matrix H, the differential with re-
spect to X of the expression log |I+HXH†| can be calculated
as d log |I+HXH†| = tr(H†(I+HXH†)−1HdX). There-
fore, the derivative of the expression is D log |I+HXH†| =
H†(I+HXH†)−1H.

IV. CAPACITY BOUNDS IN FULL-DUPLEX RELAYING

Although the capacity is not known for general fading MIMO
relay channels, capacity bounds can be derived using [2]. Simi-
lar bounds are derived for fading MIMO systems before [5], [6],
in the form of optimization problems that need to be solved.
Our main contribution here is solving the max–min optimiza-
tion problems for full-duplex transmission to evaluate the DF
achievable rate and the cut-set upper bound. Solutions to these
optimization problems are not trivial when the transmitters have
the covariance information on the channel, which is assumed in
this paper.

A. Lower Bound on the Capacity

The DF achievable rate can be derived from the mutual infor-
mation expressions in [2]. These expressions are evaluated for
MIMO relay systems in [6] for the case where the transmitters
do not have any information about the channel and the source
and relay share the same power constraint. In that case, lower
bound maximizing transmit covariance matrices are identity
matrices, and the cross-correlation matrices are zero [5]. Here,
we evaluate the DF achievable rate when the transmitters have
the covariance information on the channel, and the source and
relay have individual power constraints as it is assumed for
single-antenna systems in [4]. This rate, which is given in
Theorem 1 below, is in terms of a max–min-type optimization
problem over the source and relay transmit covariance matrices.
Later, we solve this optimization problem and propose an
iterative algorithm that gives the transmit covariance matrices.

Theorem 1: When there is only channel covariance informa-
tion at the transmitters and perfect CSI at the receivers, the
DF achievable rate of a full-duplex MIMO relay channel is
given as

Cfd ≥ max
tr(Qs)≤Ps,tr(Qr)≤Pr

min(Imac, Isr) (8)

Imac =E
[
log

∣∣∣I+HsdQsH
†
sd +HrdQrH

†
rd

∣∣∣] (9)

Isr =E
[
log

∣∣I+HsrQsH
†
sr

∣∣] . (10)

Proof: Using block Markov coding, the DF achievable
rate is given as [2, Sec. VI]

R = max
p(xs,xr)

min (I(xs; r|xr), I(xs,xr;y)) (11)

where I(xs,xr;y)=E[I(xs,xr;y|Hsd,Hrd)], I(xs; r|xr)=
E[I(xs; r|xr,Hsr)], xs and xr are circularly symmetric com-
plex Gaussian random vectors, and p(xs,xr) is the joint distri-
bution of these random vectors. To prove the theorem, we have
to calculate the mutual information expressions of I(xs,xr;y)
and I(xs; r|xr). The former is calculated in [6] as

I(xs,xr;y)≤E
[
log

∣∣∣∣I+[Hsd Hrd]

[
Qs Qsr

Qrs Qr

]
[Hsd Hrd]

†
∣∣∣∣
]

(12)

In (12), equality is achieved when the input distributions are
Gaussian, which is the case in this paper. As pointed out in
[5], the cross-correlation matrices Qsr = E[xsxr

†] and Qrs =
E[xrxs

†] that maximize the mutual information values are zero
when the transmitters do not know more than the statistics
of the channel. The insight behind this is explained in [5] as
follows. In the integral operation in (12), one can replace Hsd

with −Hsd since the beginning phase of the integration is not
important for any Hsd. This is equivalent to keeping Hsd the
same but replacing xs with −xs. However, this sign change
makes cross-correlation matrices to also change their sign. Us-
ing the concavity of mutual information, if the cross-correlation
matrices are chosen to be zero, the mutual information cannot
decrease. Thus, the signals are independent [5]. After tak-
ing the cross-correlation matrices to be zero matrices, (12)
becomes (9).
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The single-user capacity from source to relay, i.e.,
I(xs; r|xr), is calculated in [6] as

I(xs; r|xr)≤E
[
log

∣∣I+Hsr

(
Qs−QsrQ

−1
r Q†

rs

)
H†

sr

∣∣]. (13)

The equality in (13) is achieved when the input distributions
are Gaussian, which is the case in this paper. Using the fact that
Qsr = 0 and Qrs = 0 [5] again, (13) becomes (10). �

Theorem 1 gives the DF achievable rate in terms of a
max–min-type optimization problem that still needs to be
solved. The solution to this problem requires a joint optimiza-
tion over the source and relay transmit covariance matrices,
because the optimum Qs that maximizes Imac in (9) and the
optimum Qs that maximizes Isr in (10) are different. If we
maximize Imac, that choice of Qs will result in low Isr. As
a result, Isr will come out of the minimization in (8), and the
achievable rate will attain a lower value. In the same way, if we
maximize Isr, that choice of Qs will result in a low Imac. To
solve this tradeoff, Qs and Qr should be found jointly.

We utilize a method that is proposed in [4]. In this method,
the following function Rfl of α and Q is defined as

Rfl(α,Q)=αImac(Q)+(1−α)Isr(Q), 0 ≤ α ≤ 1 (14)

where Q = [Qs Qr]. The max–min problem in (8) corre-
sponds to first maximizing Rfl(α,Q) over Q for a fixed α, and
then taking the minimum over α [4]. It is important to note that
[4] applied this method for a different channel assumption, in
particular when both the transmitters and the receivers know the
CSI. Under this assumption, [4] solved the max–min problem.
In this paper, we apply the same method, but since our CSI
assumption is different, the solution of the max–min problem
is completely different and more complex, and it results in an
iterative algorithm.

Let us define Vfl(α) as Vfl(α) = maxQ R(α,Q) and sup-
pose that α∗ provides the minimum value of Vfl(α). Depending
on the value of α∗, we have three cases. Optimum source and
relay covariance matrices may be different in all three cases.
In the first case (α∗ = 0), Rfl(0,Q) = Isr(Q) and condition
Imac(Q) ≥ Isr(Q) should be satisfied [4]. Since the achievable
rate is found by maximizing Isr(Q) only, we find the source
transmit covariance matrix Qs as a solution to the point-to-
point problem from the source to the relay. When the receiver
knows perfect CSI and the transmitter knows partial CSI,
a point-to-point problem is already solved in [9]. Then, we
find the relay transmit covariance matrix Qr by maximizing
Imac(Q) with a fixed Qs. This is also equivalent to a single-user
problem, which is solved in [9] and, therefore, omitted here.

In the second case (α∗ = 1), Rfl(1,Q) = Imac(Q) and con-
dition Imac(Q) ≤ Isr(Q) should be satisfied. In this case, the
achievable rate is found by maximizing Imac(Q), which is
a MAC problem. When the receiver knows perfect CSI and
the transmitters know partial CSI, the MIMO-MAC system is
already solved in [9].

In the third case (0 < α∗ < 1), Rfl(α
∗,Q) = α∗Imac(Q) +

(1 − α∗)Isr(Q) and condition Imac(Q) = Isr(Q) should be
satisfied. In this case, we find the transmit covariance matrices
of the source and relay as functions of α∗. The third case is the
most interesting case as the solution is not trivial. In that case,
Qs and Qr must be optimized jointly since objective function

Rfl(α,Q) includes both Isr and Imac. However, this joint
optimization problem cannot be solved by using the methods
from the previous literature. In studies such as [7]–[9], the
transmit covariance matrices are always found by determining
their eigenvectors first. This reduces the problem of finding the
eigenvalues of the transmit covariance matrix from a matrix
variable to a vector (and sometimes scalar) variable problem.
Since the eigenvectors cannot be determined in closed form
in this joint optimization, one needs to come up with another
solution.

It is always possible to solve this joint optimization problem
using classical convex optimization methods [13]. The disad-
vantage of classical convex optimization methods is that they
are extremely slow and, therefore, cannot be used in a slow
fading wireless environment, where the statistics of the channel
changes slowly. However, under certain assumptions on the
channel, it might be possible to choose eigenvectors of the
transmit covariance matrices cleverly and propose fast and effi-
cient algorithms to find the eigenvalues. One such assumption
is that the source-to-destination link is weaker than the source-
to-relay link. Therefore, the source node chooses to transmit
along the eigenvectors of the covariance of the source-to-relay
channel, instead of the jointly optimal directions. Jointly opti-
mal directions are possibly a combination of the eigenvectors of
the covariance of the source-to-relay channel and those of the
source-to-destination channel. In vague terms, the source node
chooses to transmit toward the relay.

Once the transmit directions of the source node is given,
the transmit directions of the relay node can be found as the
eigenvectors of the relay-to-destination channel [10]. Having
chosen the eigenvectors (i.e., transmit directions) of the source
and relay transmit covariance matrices, then one can find the
jointly optimum power values allocated along these transmit
directions by modifying the methods previously offered in the
literature. Clearly, this solution is suboptimal. Although we
omit the details of this derivation [10], we will compare the per-
formance of this solution to the optimum solution in Section VI.

The optimal solution uses matrix differential calculus. First,
(14) will be maximized over Q for a fixed α∗, 0 < α∗ < 1.
Note that, transmit covariance matrices that will result from this
optimization will depend on α∗ as follows:

Vfl(α
∗)= max

tr(Qs)≤Ps,tr(Qr)≤Pr

(α∗Imac(Q)+(1−α∗)Isr(Q)) .

(15)

The Lagrangian of (15) can be written as

L=Rfl(α
∗,Q)−μs (tr(Qs)−Ps)−μr (tr(Qr)−Pr) (16)

where μs and μr are Lagrange multipliers corresponding to
source and relay power constraints, respectively. Here, we
will directly take the derivative of (16) with respect to Qs

and Qr. By using matrix differential calculus and referring
to the examples in Section III, one can take the derivative
of (16) with respect to Qs and Qr to obtain the following
Karush–Kuhn–Tucker (KKT) conditions:

E
[
α∗H†

sdD
−1
macHsd + (1 − α∗)H†

srD
−1
sr Hsr

]
≤μsI (17)

E
[
α∗H†

rdD
−1
macHrd

]
≤μrI (18)
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where Dmac is the expression inside the determinant in (9),
and Dsr is the expression inside the determinant in (10). Note
that we omitted the complementary slackness conditions while
writing KKT conditions. The KKT conditions in (17) and
(18) are satisfied with equality when matrices Qs and Qr are
positive definite, respectively. Otherwise, KKT conditions are
satisfied with strict inequalities. To solve for Qr and Qs, we
need equalities. Therefore, we utilize the reasoning that is first
introduced in [9]. Let us denote the left-hand side of (17) as E1

and the left-hand side of (18) as E2. We multiply both sides of
(17) with Qs from the right-hand side and both sides of (18)
with Qr from the right-hand side; thus, we have

E1Qs =μsQs (19)
E2Qr =μrQr. (20)

We note that when all inequalities in (17) and (18) are equali-
ties, then (19) and (20) follows directly. When all inequalities in
(17) and (18) are strict inequalities, then Qs = 0 and Qr = 0.
Therefore, both sides of (19) and (20) are zero. When some
inequalities in (17) and (18) are equalities and some are strict
inequalities, then Qs and Qr have blocks of zero matrices
corresponding to the locations of strict inequalities. In that case,
it is possible to separate the transmit covariance matrices into
two parts: a positive definite part and a zero part. The former
already satisfies (17) and (18) with equalities, and the latter
satisfies (19) and (20) with equalities. As a result, unlike (17)
and (18), (19) and (20) are always satisfied with equality for
optimum transmit covariance matrices. By applying the trace
operator, Lagrange multipliers are calculated as

μs =
tr(E1Qs)

Ps
, μr =

tr(E2Qr)

Pr
. (21)

By substituting these μs and μr into (19) and (20), we find
the fixed-point equations, which have to be satisfied by the
optimum transmit covariance matrices as follows:

Qs =
E1Qs

tr(E1Qs)
Ps, Qr =

E2Qr

tr(E2Qr)
Pr. (22)

We propose the following iterative algorithm to solve for the
fixed-point equations that are obtained from (19) and (20):

Qs(n+1)=
E1(n)Qs(n)Ps

tr (E1(n)Qs(n))
,Qr(n+1)=

E2(n)Qr(n)Pr

tr (E2(n)Qr(n))
(23)

This iterative algorithm finds the optimum transmit covariance
matrices of the source and relay for Case 3. After running
this algorithm for different α values, a minimization over α
is performed to find the lower bound. It is important to note
that the algorithm in (23) updates every element of the transmit
covariance matrices at once. As aforementioned, the eigenvec-
tors of the transmit covariance matrices were not determined
beforehand; they are found implicitly after the algorithm in (23)
converges.

The convergence of the algorithm in (23) is an important
issue. Due to mathematical complexity, convergence analysis of
the algorithm seems intractable. However, we observe through
numerous simulations that the algorithm converges, regardless
of the initial points.

B. Upper Bound on the Capacity

Having derived the DF achievable rate and jointly optimized
the source and transmitter covariance matrices, here, we con-
sider the cut-set upper bound. This bound is introduced in
[2] and evaluated for different channel model assumptions in
the literature. For example, when the receivers have perfect
CSI and the transmitters have no CSI, the cut-set upper bound
on the MIMO relay channel capacity is found in [6]. In this
paper, we consider a case where there is transmit covariance
information at the transmitters. In this case, similar to the lower
bound development, we first evaluate the mutual information
expressions in the cut-set bound and then optimize the upper
bound over Qs and Qr.

Theorem 2: When there is only channel covariance informa-
tion at the transmitters and perfect CSI at the receivers, the
cut-set upper bound of a full-duplex MIMO relay channel is
given as

Cfd ≤ max
tr(Qs)≤Ps,tr(Qr)≤Pr

min(Imac, Ibc) (24)

where Ibc = E[log |I+HbcQsH
†
bc|], Imac is given in (9), and

Hbc = [H†
sd H†

sr]
†.

The proof of Theorem 2 is very similar to the proof of
Theorem 1, and it is omitted here due to space restrictions and
due to the fact that the contribution of this paper is not the
evaluation of the upper bound expression but is providing its
solution. The proof basically calculates the cut-set upper bound
with zero cross-correlation matrices. Note that the DF achiev-
able rate and the cut-set upper bound expressions both involve
the same Imac. Therefore, the lower and upper bounds meet and
provide the capacity if Imac comes out of the minimization in
both cases.

As in the case of the lower bound, we also have a max–min
problem to solve in the upper bound. The method for this
solution is similar to the lower bound solution and utilizes
matrix differential calculus. We skip some of the development
where it can easily be obtained from lower bound analysis. This
time, we define Rfu as

Rfu(α,Q)=αImac(Q)+(1−α)Ibc(Q), 0≤α≤1. (25)

Note that unlike the DF achievable rate, the upper bound Rfu

depends on Ibc and not on Isr. Depending on the value of
minimum α∗, the solution again has three cases. In the first
case, (α∗ = 0), R(0,Q) = Ibc(Q), and condition Imac(Q) ≥
Ibc(Q) should be satisfied. For this case, the Lagrangian can be
written as

L = Ibc(Q)− μs (tr(Qs)− Ps) (26)

Using matrix differential calculus and by taking the derivative
of (26) with respect to Qs, we obtain the KKT conditions. Then,
similar to the lower bound, we derive the following algorithm:

Qs(n+ 1) =
E3(n)Qs(n)

tr (E3(n)Qs(n))
Ps (27)

where E3 = E[H†
bcD

−1
bcHbc], and Dbc is the matrix inside the

determinant of Ibc. Next, Qr is found by maximizing Imac
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using fixed Qs found earlier. This is equivalent to a single-user
problem that is solved in [9].

The second case is again a MIMO-MAC channel and is
already known. In the third case (0 < α∗ < 1), Rfu(α

∗,Q) =
α∗Imac(Q) + (1 − α∗)Ibc(Q), and Imac(Q) = Ibc(Q) should
be satisfied. The Lagrangian for this case is given as

L=Rfu(α
∗,Q)−μs (tr(Qs)−Ps)−μr (tr(Qr)−Pr) . (28)

Using matrix differential calculus and by taking the derivative
of (28) with respect to Qs and Qr, we obtain the KKT condi-
tions. Then, using the similar method as in the lower bound we
derive the algorithm as follows:

Qs(n+1)=
E4(n)Qs(n)Ps

tr (E4(n)Qs(n))
, Qr(n+1)=

E2(n)Qr(n)Pr

tr (E2(n)Qr(n))
(29)

where E4=E[α∗H†
sdD

−1
macHsd+(1 − α∗)H†

bcD
−1
bcHbc]. This

iterative algorithm finds the transmit covariance matrices of the
source and relay nodes that solves the Case 3 of the optimiza-
tion problem in the upper bound. Finally, a minimization over
α is performed to find which case results in the upper bound.

V. CAPACITY BOUNDS IN HALF-DUPLEX RELAYING

In Section IV, we considered full-duplex transmission where
the relay was assumed to receive and transmit at the same
time. However, it might be difficult to implement full-duplex
transmission in practice. Here, we consider a half-duplex trans-
mission where the transmission block is divided into two
phases. In the first phase, the relay receives the signal, and in
the second phase, it transmits. The system model was given
in (4) and (5). The DF achievable rate and the cut-set upper
bound are derived for half-duplex channels in [3] and [4] for
single-antenna systems and in [14] for MIMO systems. Here,
we generalize these bounds to the case where the transmitters
have the covariance information on the channel. Then, we find
the source and transmit covariance matrices that achieve those
bounds.

A. Lower Bound on the Capacity

In DF half-duplex transmission, the relay listens to the source
in the first phase, decodes the message, and cooperates with the
source in the second phase. Let us assume that the first phase
has duration t, and the second phase has duration 1 − t; then,
we have the following theorem.

Theorem 3: When there is only channel covariance informa-
tion at the transmitters and perfect CSI at the receivers, the DF
achievable rate of a half-duplex MIMO relay channel is

Chd ≥ max
ttr(Q(1)

s )+(1−t)tr(Q(2)
s )≤Ps

(1−t)tr(Qr)≤Pr
1≥t≥0

min(IA, IB) (30)

where IA = tE[log |I+HsrQ
(1)
s H†

sr|] + (1 − t)E[log |I+
HsdQ

(2)
s H†

sd|], and IB = tE[log |I+HsdQ
(1)
s H†

sd|] + (1 −
t)E[log |I+HsdQ

(2)
s H†

sd +HrdQrH
†
rd|].

Proof: A general lower bound for half-duplex relay chan-
nels is given in [3] and [15] as Chd ≥ min(IA, IB), where IA =

tE[I(x
(1)
s ; r|xr = 0)] + (1 − t)E[I(x

(2)
s ;y(2)|xr)], and IB =

tE[I(x
(1)
s ;y|xr = 0)] + (1 − t)E[I(x

(2)
s ,xr;y

(2))]. Here, we
will calculate these mutual information expressions for the sys-
tem model in this paper. The first expression in IA is the single-
user capacity from the source to the relay, whereas the second
expression in IA is the single-user capacity from the source to
the destination. The first expression in IB is also the single-
user capacity from the source to the destination, whereas the
second expression in IB is the MAC capacity from the source
and the relay to the destination. Since all these expressions are
known, we can calculate them to get IA and IB . Finally, the best
lower bound is found by maximizing min(IA, IB) over power
constraints and the time duration of the relay receive period. �

Theorem 3 defines the half-duplex DF achievable rate in
terms of a max–min optimization problem. When the source-to-
relay channel is better than the source-to-destination channel,
the half-duplex achievable rate is clearly less than the full-
duplex achievable rate, as IA < Isr and IB < Imac. Next, we
will solve the optimization problem in (30) with the assumption
that the relay transmit duration t is fixed. We analyze the effect
of relay transmit duration in Section VI.

We use the same approach as in the full-duplex case. The
following function Rhl of α and Q is defined as

Rhl(α,Q) = αIA(Q) + (1 − α)IB(Q), 0 ≤ α ≤ 1. (31)

Depending on the value of α∗, we have three cases. In the
first case, When α∗ = 1, Rhl(1,Q) = IA(Q), and IA(Q) ≤
IB(Q) has to be satisfied [4]. In that case, Lagrangian can be
written as

L = IA(Q)− μs

(
ttr

(
Q(1)

s

)
+ (1 − t)tr

(
Q(2)

s

)
− Ps

)
.

(32)

Using matrix differential calculus and by taking the derivative
of (32) with respect to Q

(1)
s and Q

(2)
s , we obtain the following

KKT conditions:

E5=E
[
H†

srD
−1
k Hsr

]
≤μsI, E6=E

[
H†

sdD
−1
l Hsd

]
≤μsI

(33)
where Dk is the inside of the determinant of the first expression
in IA, and Dl is the inside of the determinant of the second
expression in IA. Then, using the same arguments as in the full-
duplex mode, we derive the following algorithm:

Q(1)
s (n+ 1)

=
E5(n)Q

(1)
s (n)Ps

ttr
(
E5(n)Q

(1)
s (n)

)
+(1−t)tr

(
E6(n)Q

(2)
s (n)

) (34)

Q(2)
s (n+ 1)

=
E6(n)Q

(2)
s (n)Ps

ttr
(
E5(n)Q

(1)
s (n)

)
+(1−t)tr

(
E6(n)Q

(2)
s (n)

) . (35)

After finding the source transmit covariance matrices, Qr is
calculated by maximizing IB with source transmit covariance
matrices fixed. This is equivalent to a single-user problem [9].
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In the second case α∗=0, Rhl(0,Q)=IB(Q) and IA(Q)≥
IB(Q) has to be satisfied [4]. In this case, Lagrangian can be
written as

L = IB(Q)− μsRs − μrRr (36)

where Rs = (ttr(Q
(1)
s ) + (1 − t)tr(Q

(2)
s )− Ps), and Rr =

((1 − t)tr(Qr)− Pr). Using matrix differential calculus and
by taking the derivative of (36) with respect to Q

(1)
s , Q(2)

s , and
Qr, we obtain the KKT conditions as follows:

E7 =E
[
H†

sdD
−1
m Hsd

]
≤ μsI (37)

E8 =E
[
H†

sdD
−1
n Hsd

]
≤ μsI (38)

E9 =E
[
H†

rdD
−1
n Hrd

]
≤ μrI (39)

where Dm is the inside of the determinant of the first expression
in IB , and Dn is the inside of the determinant of the second
expression in IB . Then, using the same arguments as before, we
can obtain the algorithm that finds Q

(1)
s (n+ 1), Q(2)

s (n+ 1),
and Qr(n+ 1).

In the third case 0 < α∗ < 1, and Rhl(α,Q) is maximized
with the condition that IA(Q) = IB(Q) [4]. The Lagrangian
can be written as

L = Rhl(α
∗,Q)− μsRs − μrRr. (40)

Using matrix differential calculus and by taking the derivative
of (40) with respect to Q

(1)
s , Q(2)

s , and Qr, we obtain the KKT
conditions as

α∗E5 + (1 − α∗)E7 ≤μsI (41)
α∗E6 + (1 − α∗)E8 ≤μsI (42)

(1 − α∗)E9 ≤μrI. (43)

Using the same arguments as before, we can obtain the algo-
rithm that finds Q(1)

s (n+ 1), Q(2)
s (n+ 1), and Qr(n+ 1).

Finally, after running these algorithms, we have to take a
minimum over α and find the α∗ that results in the mini-
mum rate. As it can be seen, half-duplex algorithms are more
complex than full-duplex algorithms since they involve three
transmit covariance matrices. None of the cases over α can be
solved using previous point-to-point or MAC results.

B. Upper Bound on the Capacity

The final contribution of this paper is deriving the cut-set
upper bound for the half-duplex fading MIMO relay channel
when the transmitters have partial CSI and evaluating the
transmit covariance matrices that achieve the upper bound.

Theorem 4: When there is only channel covariance informa-
tion at the transmitters and perfect CSI at the receivers, the
cut-set upper bound of a half-duplex MIMO relay channel is
given as

Chd ≤ max
ttr(Q(1)

s )+(1−t)tr(Q(2)
s )≤Ps

(1−t)tr(Qr)≤Pr
1≥t≥0

min(IC , IB) (44)

Fig. 2. Convergence of the lower bound algorithm for the half-duplex case.

Fig. 3. Convergence of the upper bound algorithm for the half-duplex case.

where IC = tE[log |I+HbcQ
(1)
s H†

bc|] + (1 − t)E[log |I+
HsdQ

(2)
s H†

sd|]. The proof of Theorem 4 is similar to the proof
of Theorem 3 and is omitted here due to space restrictions. The
solution to the optimization problem in (44) is also similar to
the solution to the problem in (30) and is also omitted here.

VI. NUMERICAL RESULTS

Here, we analyze the performance of the proposed algo-
rithms numerically. The expectation operator is calculated us-
ing Monte Carlo-type simulations. We start with a convergence
analysis. This analysis is carried out for more complicated
half-duplex case, and similar results can also be obtained for
full-duplex case. For all calculations, the power constraints
(Ps and Pr) are fixed at 10 dB, and there are three antennas
at each node of the network. At each iteration of the lower
bound and upper bound algorithms, we calculate the matrix
norms of transmit covariance matrices of the source and relay
terminals. Then, in Figs. 2 and 3, we plot the norm of the differ-
ence between two matrices of successive iterations. We clearly
see that, as the iteration index increases, covariance matrices
converge to their optimum values. In addition, through our

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on October 02,2022 at 02:19:40 UTC from IEEE Xplore.  Restrictions apply. 



AYGÜN AND SOYSAL: CAPACITY BOUNDS ON MIMO RELAY CHANNEL WITH COVARIANCE FEEDBACK 2049

Fig. 4. Convergence rate of the eigenvalues of the relay transmit covariance matrix, starting from different initial points.

numerous trials, we have observed that the proposed algorithm
converges to the same solution, regardless of the initial points.
To show this, in Fig. 4, we plotted the convergence behavior
starting from different initial points. Note that the points in
our iteration are matrices. To keep the figures simple, we use
only the eigenvalues of the relay node instead of each element
of the transmit covariance matrices of both source and relay
nodes. We observe that the algorithm converges faster when
the eigenvalues are chosen to be as close as the eigenvalues
of the channel covariance matrix (see the upper left corner in
Fig. 4). When only one of the eigenvalues is chosen to be
positive and the rest are chosen to be zero, the convergence
is much slower. Although not shown here, similar arguments
also hold for the eigenvectors. If the initial eigenvectors of the
transmit covariance are chosen to be the same as the eigenvec-
tors of the channel covariance matrix, the algorithm converges
faster.

Second, capacity bounds on the full-duplex MIMO relay
channel are simulated using the proposed algorithms. Power
constraints are chosen to be 10 dB for all cases, and three
antennas are used at all nodes. Figs. 5 and 6 calculates those
bounds in bits/s/Hz for different channel covariance matrices.
For the covariance matrix corresponding to Fig. 5, lower and

Fig. 5. Full-duplex transmission capacity lower and upper bounds that result
in α∗ = 1, at which point, both curves meet and give the capacity.

upper bounds are given by α∗ = 1 point (Case 2), which is the
minimum value of the curves with respect to α. As expected,
the lower bound is equal to the upper bound at Case 2, and the
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Fig. 6. Full-duplex transmission capacity lower and upper bounds that result
in α∗ = 0.9.

Fig. 7. Half-duplex transmission capacity lower and upper bounds that result
in α∗ = 0.

capacity is in fact achieved for this covariance matrix setting.
Similarly, for the covariance matrix corresponding to Fig. 6,
lower and upper bounds are given by α∗ = 0.9 point (Case 3),
which is the minimum value of the curves with respect to
α. The difference between the lower and upper bounds for
this case is about 1%. The maximum difference between the
bounds happens in Case 1, the point of α = 0. At that point, the
difference between the rates is 10%. In addition, we observe
that (not shown in the figures) optimum transmit covariance
matrices in the lower bound are almost the same as those in the
upper bound for each case. In Figs. 7 and 8, we obtain similar
plots for the half-duplex scenario for which capacity is obtained
when α = 0 in Fig. 7. The optimum α values for the lower and
upper bounds turn out to be different in Fig. 8 for Case 3.

Next, with the source power fixed at 10 dB, we simulate the
lower bound algorithm by changing the relay power. In Fig. 9,
we observe that the channel is subject to the Case 2 condition
when the relay power is 5–10 dB, to the Case 3 condition when
the relay power is 10–15 dB, and to the Case 1 condition
when the relay power is 15–30 dB. The channel saturates with
relay power since, in Case 1, the relay power is large enough
to forward all the information decoded at the relay node to

Fig. 8. Half-duplex transmission capacity lower bound that results in α∗ =
0.7 and upper bound that results in α∗ = 0.4.

Fig. 9. Full-duplex DF achievable rate with increasing relay power.

Fig. 10. Half-duplex DF achievable rate with respect to the fraction of time
devoted to relay silent period.

the destination node, and the achievable rate is limited by the
capacity of the source-to-relay link [4]. Having seen the effect
of increasing relay power, in Fig. 10, we plot the effect of the
duration that is allocated to relay silent period in half-duplex
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Fig. 11. Comparison of the lower bounds that are obtained by the algorithm
with matrix calculus and by fixing the channel directions first and proposing an
algorithm for the power values only.

transmission. We observe that the lower bound is concave in
t. For the covariance matrix setting in Fig. 10, the best lower
bound is obtained when t = 0.8.

Finally, we compare the performance of the algorithm pro-
posed in this paper that is based on matrix calculus to an
algorithm that can be derived from previous literature. In this
second algorithm, transmit covariance matrices are decom-
posed into eigenvectors and eigenvalues. The eigenvectors are
chosen cleverly, but this choice is most probably not optimal.
Then, only the eigenvalues are determined using an algorithm.
In Fig. 11, we clearly see that the algorithm proposed in this
paper outperforms the algorithm with fixed channel directions
that is proposed in [10], particularly at low SNR conditions. As
SNR increases, we know in Fig. 9 that Case 1 gives the lower
bound. Since Case 1 results in a single-user solution, it is no
surprise that two algorithms give the same lower bound in a
high-SNR scenario.

VII. CONCLUSION

In this paper, we have analyzed both full-duplex and half-
duplex fading MIMO relay channels when the transmitters
have partial CSI and the receivers have the perfect CSI. The
channel capacity for such a system is not known in general. We
derived DF achievable rates and cut-set upper bounds on the
channel capacity, which were given in terms of max–min-type
optimization problems. When the transmitters know the chan-
nel covariance information, finding the optimum source and
relay transmit covariance matrices become important because
power allocation over the spatial dimension of the channel
has a significant impact on the performance. We use matrix
differential calculus to solve the source and relay transmit
covariance matrices jointly. In our method, optimum transmit
covariance matrices have been found directly using a fast and
efficient iterative algorithm.
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