
256 JOURNAL OF COMMUNICATIONS AND NETWORKS VOL. 21, NO. 3, JUNE 2019

Age of Information in Multihop Multicast Networks
Baturalp Buyukates, Alkan Soysal, and Sennur Ulukus

Abstract: We consider the age of information in a multihop mul-
ticast network where there is a single source node sending time-
sensitive updates to nL end nodes, and L denotes the number of
hops. In the first hop, the source node sends updates to n first-hop
receiver nodes, and in the second hop each first-hop receiver node
relays the update packets that it has received to n further users
that are connected to it. This network architecture continues in
further hops such that each receiver node in hop ` is connected to
n further receiver nodes in hop ` + 1. We study the age of infor-
mation experienced by the end nodes, and in particular, its scaling
as a function of n. We show that, using an earliest k transmission
scheme in each hop, the age of information at the end nodes can be
made a constant independent of n. In particular, the source node
transmits each update packet to the earliest k1 of the n first-hop
nodes, and each first-hop node that receives the update relays it to
the earliest k2 out of n second-hop nodes that are connected to it
and so on. We determine the optimum k` stopping value for each
hop ` for arbitrary shifted exponential link delays.

Index Terms: Age of information, large networks, scaling laws.

I. INTRODUCTION

RECENTLY, with the increase in the number of communi-
cation network applications requiring real-time status in-

formation, timeliness of the received messages has become a
critical and desirable feature for networks. Such applications
include sensor networks measuring ambient temperature [1],
autonomous vehicular networks where instantaneous vehicle
information including velocity, position and acceleration is
needed [2] and news reports from Twitter. In all these applica-
tions, information loses its value as it becomes stale.

This motivates the study of age of information, which is a
metric measuring the freshness of the received information. A
typical model to study age of information includes a source
which acquires time-stamped status updates from a physical
phenomenon. These updates are transmitted over the network
to the receiver(s) and the age of information in this network, or
simply the age, is the time elapsed since the most recent update
at the receiver was generated at the transmitter. In other words,
at time t, age ∆(t) of a packet which was generated at time u(t)
is ∆(t) = t− u(t).
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Fig. 1. Two-hop multicast network with a single source node sending updates
through n middle nodes each of which is tied to further n end nodes.

Most of the existing work focuses on age analysis in a
queuing-theoretic setting. References [3]–[7] study the age un-
der various arrival and service profiles. References [8] and [9]
investigate packet management strategies including blocking
and preemption for M/G/1/1 and G/G/1/1 queues, respectively.
References [10]–[12] study multi-hop networks in which up-
date packets are relayed from one node to another. Single-hop
systems with exogenous arrivals are studied in [13] and [14].
References [15] and [16] study the stationary distribution and
moments of age of information in queuing systems. In [17]
and [18], the benefits of waiting in status update systems are
investigated. Another line of research studies the age under the
energy harvesting setting [19]–[28].

Considering dense IoT deployments and the increase in the
number of users in networks supplying time-sensitive informa-
tion, the scalability of age as a function of the number of nodes
has become a critical issue. To this end, we need to study how
the age performance of the network changes with growing net-
work size. Reference [29] studies a mobile social network with
a single service provider and n communicating users, and shows
that under Poisson contact processes among users and uniform
rate allocation from the service provider, the average age of the
content at the users grows logarithmically in n. In contrast, ref-
erence [30] observes that in a single-hop multicast network ap-
propriate stopping threshold k can prevent information staleness
as the network grows.

Motivated by this observation, we study the scalability of
the age in multihop multicast networks using similar threshold
ideas. Extending the results of [30], we first analyze the single-
hop problem with exogenous arrivals where the source directly
communicates with the end users but cannot generate the up-
dates itself. We then characterize the age for the two-hop case
(see Fig. 1) using our single-hop with exogenous arrivals result
as a building block. We show that for this two-hop multicast
network under i.i.d. shifted exponential link delays and stopping
thresholds k1 and k2 at each hop, an upper bound on the average
age can be obtained. Through this upper bound, we show that
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Fig. 2. Multicast network model: (a) two-hop operation and (b) details of hops `− 1 and `.

the average age is limited by a constant as n increases. Utilizing
this upper bound, we then extend the result of two-hop network
to L-hop multicast networks for general L. We determine the
optimal stopping threshold for each hop `, k`, that minimizes
the average age for arbitrary shifted exponential link delays.

II. SYSTEM MODEL AND AGE METRIC

We consider a multihop system where in the first hop a sin-
gle source node broadcasts time-stamped updates to n first-hop
receiver nodes using n links with i.i.d. random delays, and in
the second hop, each first-hop receiver node relays the update
packets it has received to n further nodes that are connected to
it. This network architecture continues in further hops such that
each receiver node in hop `−1 acts as a transmitter in hop ` and
it is connected to n further receiver nodes in hop `. Fig. 1 shows
the described model for two hops. We first consider the age of
information in a two-hop (L = 2) multicast network and then
extend our results to general multihop multicast networks with
L hops, where L is arbitrary.

We start describing our system model within the simpler two-
hop setting. In the two-hop multicast network, an update takes
X time to reach from the source node to a particular mid-level
node and X̃ time to reach from that mid-level node to a partic-
ular end node where X and X̃ are shifted exponential random
variables with parameters (λ, c) and (λ̃, c̃), respectively, where
c and c̃ are positive constants. Note that the constant shift pa-
rameters capture additional delay that may be experienced along
with the exponential link delay and when they are zero random
variables corresponding to service times become exponentially
distributed. In each hop, the service times of individual links
are i.i.d. realizations of random variables X and X̃ , e.g., in the
first hop service times of individual links are i.i.d. Xi and in the
second hop service times of individual links are i.i.d. X̃i.

In the two-hop scenario, age is measured for each of the n2

end nodes and for node i at time t age is the random process
∆i(t) = t − ui(t) where ui(t) is the time-stamp of the most

recent update at that node. When the source node sends out up-
date j, it waits for the acknowledgment from the earliest k1 of
n middle nodes. After it receives all k1 acknowledgment sig-
nals, we say that update j has been completed and the source
node generates update j + 1. At this time, transmissions of the
remaining n− k1 packets are terminated. Thus, if a node in the
first hop is not in the earliest k1 nodes to receive update j then
service of this update is preempted. In the second hop, these
earliest k1 nodes that have received update j start transmitting
this update to their end nodes and they stop whenever k2 of their
end nodes have received the current update. Middle nodes im-
plement a blocking scheme when they are busy transmitting to
the end nodes, i.e., they discard arriving packets when they are
not idle. When the middle nodes finish transmitting the current
update to k2 of their children nodes, they wait for the arrival of
the next update from the source node.

For general L, principles that are explained above are re-
peated at every hop, e.g., the transmitters in hop ` wait for k`
of their children nodes to receive the current update before they
declare that the current update has been completed; they drop
all other incoming updates from transmitters in hop ` − 1 as
they are transmitting the current update; and when their update
is received by k` receivers they preempt the remaining n − k`
updates. When this is over, transmitters in hop ` wait for the
next update from their parent nodes in hop `− 1; see Fig. 2(b).

The metric we use, time averaged age, is given by

∆ = lim
τ→∞

1

τ

∫ τ

0

∆(t)dt, (1)

where ∆(t) is the instantaneous age of the last successfully re-
ceived update as defined above. We will use a graphical argu-
ment similar to [30] to derive the average age at an individual
end node. Since all link delays are i.i.d. for all nodes and pack-
ets, each end node i experiences statistically identical age pro-
cesses and will have the same average age. Therefore, it suffices
to focus on a single end user for the age analysis.
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III. BUILDING BLOCK: SINGLE-HOP NETWORK WITH
EXOGENOUS ARRIVALS

We first note that at the second hop what we essentially have
is n parent nodes each tied to n children nodes. Therefore, each
second hop transmitter and its children nodes correspond to the
single-hop network analyzed in [30] with one important differ-
ence: second hop transmitters cannot generate update packets.
They can only relay packets sent from the source node. Thus,
in this section, we first analyze a single-hop network in which
update packets arrive exogenously with a given expected inter-
arrival time 1/µ. Then, using this network as a building block
we analyze the L-hop network described in Section II, first for
L = 2, i.e., a two-hop network, then for general L. We have
i.i.d. shifted exponential service times between the source and
each of its n children nodes as in [30]. Similarly, transmission
of the current update stops when k out of n nodes receive the
update. Thus, in this section, we extend the results of [30] to the
case of exogenous arrivals, and determine a k threshold which
depends on λ, c and µ. Fig. 3 shows the arrival and update struc-
ture of a building block. Fig. 2(a) shows this building block as
part of a two-hop network; and Fig. 2(b) shows it as a part of an
`th hop in an L-hop network.

Under this model with i.i.d. link delay X , an update takes
Xk:n units of time to reach k out of n nodes where we de-
note the kth order statistic of random variables X1, · · ·, Xn

as Xk:n. Here Xk:n is the kth smallest of X1, · · ·, Xn, e.g.,
X1:n = min{Xi} and Xn:n = max{Xi}. For shifted exponen-
tial random variable X , we have

E[Xk:n] =c+
1

λ
(Hn −Hn−k), (2)

V ar[Xk:n] =
1

λ2
(Gn −Gn−k), (3)

where Hn =
∑n
j=1 1/j and Gn =

∑n
j=1 1/j2. Using these,

E[X2
k:n] =c2 +

2c

λ
(Hn −Hn−k)

+
1

λ2
(
(Hn −Hn−k)2 +Gn −Gn−k

)
. (4)

We say that the system is busy when a transmitted update has
not been received by k out of n nodes yet. Once k end nodes

receive an update, transmitter stops the service to the remaining
n − k nodes. Then, the system is idle until the next update ar-
rives. Fig. 4 shows a realization of the update process between
the source node and a particular end node. Note that realizations
of the update process for different end nodes might be differ-
ent depending on when and for which updates these nodes have
been one of the earliest k nodes. On the other hand, although
realizations are different, each end node experiences the same
random process. Updates arrive at the source node with an inter-
arrival time, R, where E[R] = 1/µ. In the most general setting,
R is an arbitrary i.i.d. random variable. In Fig. 4, arrows that
are above and below the source node line indicate the received
and transmitted updates at the source node, respectively.

An important aspect of our model is that updates at the source
node are divided into three groups, namely successful updates,
dropped updates, and preempted updates. In Fig. 4, filled cir-
cles correspond to successfully received updates. They indicate
that the update received at the source node started transmission
to n end nodes and this particular end node received the up-
date. We denote the time between the transmission and the re-
ception of successful updates (filled circles) as the service time,
X̄ . The order of this particular node might be smaller than k,
thus X̄ ≤ Xk:n. The source continues the service of the first
filled circled update until k nodes receive the update. During
this time if new updates arrive at the source, they are dropped;
the dropped updates (crosses in Fig. 4) never go into service,
they are lost. Once k nodes receive this update, system becomes
idle and the source waits for the arrival of the next update.

We denote the waiting time until the next arrival with Z. The
next arrival which is shown with an empty circle in Fig. 4 starts
the service. However, for this particular realization of the update
process, this particular end node is not one of the earliest k end
nodes during the transmission of empty circled update. Since
the source stops service once k end nodes receive the update,
this transmitted update never arrives at this particular end node.
We denote those updates that start a service but do not arrive
at this particular end node as preempted updates. Even though
preemption usually means stopping a current service in order to
start a new one immediately, here we use the word preemption
to mean that the current service is stopped, and a new service
will start after an idle period when a new update arrives at the
source. However, similar to regular meaning of preemption, in
our model as well, current preempted update leaves service and
a fresh update takes over.

We denote the time between two consecutive departures from
the source as Y = Xk:n+Z. Note that there are a random num-
ber of dropped updates during each realization of Y . In Fig. 4,
between the first successful (filled circle) update and the next up-
date that starts the service (empty circle), there are three dropped
updates (crossed). In other words, the fourth received update is
able to start a new service. In addition, there are multiple realiza-
tions of Y before the next successful (filled circle) update, since
this particular end node is not able to receive empty circled up-
dates. We denote the time between two successful updates, i.e.,
two consecutive updates that depart from the source and suc-
cessfully arrive at the end node, with S. Remember that Y is
the time between two updates that depart from the source and
start the service but are not guaranteed to arrive at this particu-
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Fig. 4. Update process for an end node in the building block setting. Filled circles indicate the arrivals successfully received by this particular end node. Crosses
indicate updates that arrive at the source node when it is busy transmitting another update. Empty circles show the updates that are transmitted by the source
node but are not received by this particular end node, i.e., they are preempted from the perspective of this particular end node.

lar end node. We can relate the interarrival times of departing
updates and arriving updates using S =

∑M
i=1 Yi. In Fig. 4,

this particular end node receives the first and the fourth updates
that depart the source and enter the service. Therefore, in this
example we have M = 3. In addition, remember that R is the
interarrival time between the updates that arrive at the source
node. For a general R, there is no closed-form expression with
known variables that relates interarrival times at the end node,
S, to interarrival times at the source node, R. However, when R
is exponential Z is exponential as well due to the memoryless
property of the exponential distribution. Thus, for exponential
R we have S =

∑M
i=1(Xk:n +R)i.

When the current update reaches k earliest nodes, the source
node terminates the remaining n−k transmissions and begins to
wait for the next arrival and then repeats the process upon arrival
of the next update packet. Since the link delays are i.i.d., the end
users receive the packet in service with probability p = k/n. If
an end user receives update j and the next one it receives is up-
date j + M , then M is geometrically distributed with p with
moments

E[M ] =
1

p
=
n

k
, E[M2] =

2− p
p2

=
2n2

k2
− n

k
. (5)

Similar to [30], the average age for the earliest k stopping
scheme with exogenous packet arrivals with rate µ is

∆(k,µ) =
E[A]

E[S]
, (6)

where A denotes the shaded area in Fig. 5 and S is its length.
Remember from Fig. 4 that the random variable S is the interar-
rival time at the end nodes. Inspecting Fig. 5 to calculate A, we
find E[A] = E[S2]/2 + E[S]E[X̄]. Here, X̄ denotes the ser-
vice time of a successful update such that E[X̄] = E[Xi|i ∈ K]
where K is the set of earliest k nodes that receive the update.
Now, (6) becomes1

∆(k,µ) =E[X̄] +
E[S2]

2E[S]
. (7)

1Since the building block studied in this section will eventually be used in the
upcoming sections in the analysis of two-hop and L-hop networks, we should
emphasize that the definitions of X̄ and S do not assume any network structure.
As far as (7) is considered, it is not important where an update that is received
by an end node is generated. X̄ is the time that the update spends in the system
from the time it is generated (possibly by a node other than the one that relays
it to the end node) until the time it is received at the end node. S is the time
between two consecutive successfully received updates, regardless of whether
the updates are generated at the node that transmits them or not. This reasoning
is important for our derivations in multihop multicast networks.

We can write the first two moments of S in terms of Y as

E[S] = E[M ]E[Y ], (8)

E[S2] = E[M ]E[Y 2] + E[Y ]2E[M2 −M ]. (9)

Inserting these into (7) we obtain

∆(k,µ) = E[X̄] +
E[M2]

2E[M ]
E[Y ] +

V ar[Y ]

2E[Y ]
. (10)

In the following theorem, we determine the age of an update
at an end node for a single-hop building block model using (10).

Theorem 1: For a single-hop building block model with ex-
ogenous arrivals that have expected interarrival time 1/µ, for the
earliest k stopping scheme, the average age of an update at an
individual end node is

∆(k,µ) =
1

k

k∑
i=1

E[Xi:n] +
2n− k

2k
(E[Xk:n] + E[Z])

+
V ar[Xk:n + Z]

2(E[Xk:n] + E[Z])
. (11)

Proof: The first term comes from E[X̄] as

E[X̄] = E[Xj |j ∈ K] =
k∑
i=1

E[Xi:n]Pr[j = i|j ∈ K]

=
1

k

k∑
i=1

E[Xi:n]. (12)

where we used the fact that, since we have k out of n nodes
selected independently and identically in K, we have Pr[j =
i|j ∈ K] = 1/k. The second and third terms are obtained upon
substitution of Y = Xk:n+Z andE[M ] andE[M2] expressions
given in (5) into (10). �

When we have general interarrival times as we have in this
problem, Xk:n and Z may be dependent. However, with expo-
nential interarrivals we can show their independence using the
memoryless property, and simplify the age expression given in
(11) as follows.

Corollary 1: When the arrival process is Poisson with rate
µ, the age of an end node is

∆(k,µ) =
1

k

k∑
i=1

E[Xi:n] +
2n− k

2kµ
(µE[Xk:n] + 1)
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Fig. 5. Sample age evolution ∆(k,µ)(t) of an end node. Updates that find the
system idle arrive at times Ti at the source. Here, update j arrives at time
Tj−1 and immediately goes into service. Successful update deliveries are
marked with • and in this figure, updates j − 1, j and j + 2 are delivered
successfully whereas update j + 1 is terminated.

+
µV ar[Xk:n]

2(µE[Xk:n] + 1)
+

1

2(µ2E[Xk:n] + µ)
. (13)

Proof: When the arrival process is Poisson with µ, in other
words, R is exponential with expected interarrival time 1/µ, the
random variableZ which corresponds to the residual interarrival
time is exponentially distributed with the same parameter, i.e.,
Z = R. In addition, Z is independent of X due to the memory-
less property of the exponential distribution. Then,

V ar[Y ] = V ar[Xk:n + Z] = V ar[Xk:n] + V ar[Z], (14)

and we plug in E[Z] = 1/µ and V ar[Z] = 1/µ2. �
When the service times X are i.i.d. shifted exponential ran-

dom variables and when n is large, we can further simplify the
age expression in (13) as follows.

Corollary 2: For large n and n > k, set k = αn. For shifted
exponential (λ, c) service times X , the average age for the ear-
liest k scheme with exogenous Poisson arrivals with rate µ can
be approximated as

∆(k,µ) ≈
c

α
+
c

2
+

1

λ
− 1

2λ
log(1− α) +

1

αµ
− 1

2µ

+
1

2

(
µ2c− µ2 log(1− α)

λ
+ µ

)−1
. (15)

Proof: Using the order statistics above,

δ1 =
1

k

k∑
i=1

E[Xi:n] = c+
Hn

λ
− 1

kλ

k∑
i=1

Hn−i. (16)

As in [30], we have
∑k
i=1Hn−i =

∑n−1
i=1 Hi −

∑n−k−1
i=1 Hi

and the series identity
∑k
i=1Hi = (k + 1)(Hk+1 − 1). Using

these we get

δ1 = c+
1

λ
− n− k

kλ
(Hn −Hn−k)

≈ c+
1

λ
+

1− α
αλ

log(1− α), (17)

since for large n, we have Hi ≈ log(i) + γ. Also,

δ2 =
2n− k

2µk
(µE[Xk:n] + 1) (18)

=
2n− k

2µk

(
µ

(
c+

Hn −Hn−k

λ

)
+ 1

)
(19)

≈ (2− α)c

2α
+
α− 2

2αλ
log(1− α) +

2− α
2αµ

. (20)

Next, we note that we have

lim
n→∞

µV ar[Xk:n]

2(µE[Xk:n] + 1)
= 0. (21)

We see this from the expected values of order statistics,

µV ar[Xk:n]

2(µE[Xk:n] + 1)
=

µ(Gn −Gn−k)

2(µλ2c+ µλ(Hn −Hn−k) + λ2)
. (22)

We know that the sequence Gn converges to π2/6. As n in-
creases Gn−k = G(1−α)n also goes to the same value making
the numerator 0. Thus, as n tends to∞ (21) is achieved. Simi-
larly,

δ3 =
1

2(µ2E[Xk:n]+ µ)
≈ 1

2

(
µ2c− µ2 log(1− α)

λ
+ µ

)−1
.

(23)

Summing δ1, δ2, and δ3 yields the expression in (15). �
Note that the age expression in (15) when n is large is a func-

tion of the ratio α = k/n only implying that the age converges
to a constant even when the packets arrive exogenously, similar
to [30] where the packets are generated at will at the source.

Although there is no explicit closed form solution for the op-
timal α, denoted as α∗, which minimizes (15), we can calculate
it numerically. For instance, when (λ, c) = (1, 1) and Poisson
arrival rate is µ = 1, age minimizing α is α∗ = 0.837. This op-
timal value is higher than that of the original case in which the
source itself generates the packets at will, which is α∗ = 0.732
found in [30]. This is because with exogenous arrivals at the
source node, update interarrival time at the end nodes is larger.
In this regard, we see that when the Poisson arrival rate is in-
creased α∗ decreases. This is expected because when the arrival
rate is high (i.e., update packets arrive frequently), the source
node prefers to wait for the freshest one instead of sending the
current update to more and more end users. Similarly, when the
arrival rate is low (i.e., update packets arrive infrequently), α∗

is higher because in this case source knows that interarrival time
is higher so that before it waits for the next packet it wants to
update as many end nodes as it can (see Fig. 6(a)). We also note
that as we take µ→∞ in (15), we get

∆(k) ≈
c

α
+
c

2
+

1

λ
− 1

2λ
log(1− α), (24)

which is the age expression in [30]. Thus, age expression under
exogenous Poisson arrivals with rate µ converges to the case in
which source generates the packets itself as µ tends to∞.

Finally, we note an interesting aspect of the problem with ex-
ogenous arrivals: It is shown in [30] that when the service time
random variableX is exponential (i.e., shift variable is zero), the
average age is minimized when k = 1. However, this is not the
case when updates arrive exogenously. We observe in Fig. 6(b)
that the age minimizing k value can be greater than 1, and it de-
pends on the update arrival rate, µ. As µ increases, the optimal
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Fig. 6. ∆(k,µ) as a function of stopping threshold k for several µ values with
λ = 1. ◦ marks the minimized ∆(k,µ): (a) When c = 1 and (b) when
c = 0.

k decreases and approaches 1. The reason for this is that the ran-
dom waiting time with exogenous arrivals introduces a random
shift to the exponential distribution of the service time.

IV. TWO-HOP NETWORK

Using the building block problem solved in the previous sec-
tion, we are now ready to solve the two-hop problem (L = 2)
described in Section II as a preliminary step towards solving
the most general case for arbitrary L. In the two-hop system,
middle nodes cannot generate updates rather they receive them
from the source node. Thus, each middle node and its n chil-
dren nodes in the second hop can be modeled as in Section III.
Since the source node sends updates to the first k1 of its nodes,
a middle node receives a certain update packet with probability
p1 = k1/n. If a middle node receives update j and the next one
it receives is update j + M1, as in the building block problem,
M1 is a geometrically distributed random variable with parame-
ter p1.

Since the source generates a new update at will once the cur-
rent update is delivered to k1 middle nodes, the interarrival time
between updates that start service in the first hop is Y1 = Xk1:n.
Let random variable S1 denote the interarrival time at the re-
ceiver nodes in the first hop. In other words, let S1 denote the

time between updates that leave service in the first hop. Since
each update cycle takes Xk1:n units of time, successful interar-
rival time at the middle nodes can be written as

S1 =

M1∑
i=1

(Y1)i =

M1∑
i=1

(Xk1:n)i, (25)

where the mean interarrival time is E[S1] = E[M1]E[Xk1:n].
Note that we have Z1 = 0 for the source node since it generates
the updates as soon as the previous one is completed (transmit-
ted to k1 nodes). The receiver nodes in the first hop immediately
relay the update that they have received. Therefore, the interar-
rival time between the successfully received updates at the re-
ceiver nodes in the first hop, S1, is equal to update interarrival
time at the transmitter nodes in the second hop, R2.

After receiving the updates with interarrival time R2 = S1,
middle nodes transmit each update until it is delivered to k2
of their children nodes. Similar to the first hop, when a mid-
dle node transmits an update, an end node receives the update
with probability p2 = k2/n. Geometrically distributed M2 with
parameter p2 denotes the number of cycles between successive
updates to an end node. The interarrival time between updates
that depart from a middle node and start service in the second
hop is Y2 = X̃k2:n + Z2. Let random variable S2 denote the
interarrival time between updates that successfully arrive at the
receiver nodes in the second hop. Then,

S2 =

M2∑
i=1

(Y2)i =

M2∑
i=1

(X̃k2:n + Z2)i. (26)

Note that in this model a successful update reaches an end
node without being preempted in each of the hops. Thus, the
service time of a successful update denoted by X̄ is the sum of
link delays in each hop and corresponds to the total time spent
in the system by that update. Then, the total service time of a
successful update delivered to some node i through middle node
j is E[X̄] = E[Xj |j ∈ K]+E[X̃i |i ∈ Kj ]. Here the set K is
the set of first k1 middle nodes that receive the update and the
setKj defined for each j inK is the set of first k2 end nodes that
receive the update. Thus, for an update to reach an end node
that end node has to be among the earliest k2 children nodes of
its middle node and the corresponding middle node has to be
one of the earliest k1 middle nodes. Now, by using (10), the
average age of an end node for a two-hop system is given in the
following theorem.

Theorem 2: For a two-hop system with the earliest k1, k2
stopping scheme, the average age at an individual end node is

∆(k1,k2) =
1

k1

k1∑
i=1

E[Xi:n] +
1

k2

k2∑
i=1

E[X̃i:n]

+
2n− k2

2k2
(E[X̃k2:n] + E[Z2])

+
V ar[X̃k2:n + Z2]

2(E[X̃k2:n] + E[Z2])
. (27)

Proof: This theorem follows from Theorem 1 upon observing
that the second hop is the same as the building block problem.
However, successful updates in the two-hop setting spend time
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in both hops to reach the end nodes. Noting also that successful
updates do not wait in the system till they reach the end nodes,
we find

E[X̄] =
1

k1

k1∑
i=1

E[Xi:n] +
1

k2

k2∑
i=1

E[X̃i:n]. (28)

Using (28) in (10) yields the theorem. �
This theorem is valid for any distribution for X and X̃ . Ran-

dom variable Z2 denotes the residual interarrival time before the
next update arrives to the middle node. When we no longer have
exponential interarrival times, it is not easy to determine the first
and second order statistics of Z2. However, we can upper bound
the average age of our model ∆(k1,k2) with the average age un-
der exponential interarrivals to the middle nodes ∆′(k1,k2) using
the following lemma.

Lemma 1: For a two-hop system, let ∆′(k1,k2) denote the av-
erage age of an end node under exponential interarrivals to mid-
dle nodes with mean E[R2]. Then, ∆(k1,k2) ≤ ∆′(k1,k2).

The proof of Lemma 1 follows from the DMRL (decreasing
mean residual life) [31] property of interarrival times and NBUE
(new better than used in expectation) [31] property of service
times and is provided in Section VII. Note that as long as the
aforementioned conditions on the interarrival and service time
distributions are met, this lemma also applies to the case with
L > 2 hops. This generalization is made in Section VII. Since
∆(k1,k2) ≤ ∆′(k1,k2), in order to prove that the average age in the
two-hop system is bounded by a constant, all we need to show
is that ∆′(k1,k2) is upper bounded by a constant as the network
grows, i.e., n increases.

Corollary 3: For a two-hop system, assuming exponential
interarrivals to the middle nodes with E[R2], the average age
at an end node under the earliest k1, k2 stopping scheme is

∆′(k1,k2) =
1

k1

k1∑
i=1

E[Xi:n] +
1

k2

k2∑
i=1

E[X̃i:n]

+
2n− k2

2k2
E[X̃k2:n] +

2n2 − nk2
2k1k2

E[Xk1:n]

+
k1V ar[X̃k2:n]

2(k1E[X̃k2:n] + nE[Xk1:n])

+
n2E[Xk1:n]2

2k1(k1E[X̃k2:n] + nE[Xk1:n])
. (29)

Proof: When the interarrival times to the middle nodes, R2

are exponential, then Z2 = R2 due to the memoryless prop-
erty of the exponential distribution. In addition, we know that
R2 = S1. Therefore, Z2 is exponential with mean E[Z2] =
E[S1] = E[M1]E[Xk1:n]. Then, V ar[Z2] = E[S1]2 =
E[M1]2E[Xk1:n]2 where M1 is geometrically distributed with
p1 = k1/n. Combining these and noting that Z2 and X̃k2:n are
independent yields the result. �

Corollary 4: For a two-hop system, assuming n is large and
n > k1 and n > k2 and letting k1 = α1n and k2 = α2n,
under exponential interarrival assumption to the middle nodes
with mean E[R2], and shifted exponential service times X with
(λ, c) and X̃ with (λ̃, c̃), the average age for the earliest k1, k2

scheme can be approximated as

∆′(k1,k2) ≈
1

λ
+

1

λ̃
+

c̃

α2
+
c̃

2
− 1

2λ̃
log(1− α2)

+
2− α2 + 2α1α2

2α1α2
c+

λ̃K2
1

2α1λ[λα1K2 + λ̃K1]

+
3α2 − 2α1α2 − 2

2α1α2λ
log(1− α1), (30)

where K1 = (λc− log(1−α1)) and K2 = (λ̃c̃− log(1−α2)).
The proof of Corollary 4 is similar to that of Corollary 2. With

Corollary 4 we have showed that ∆′(k1,k2) derived in Corollary 3
is independent of n for large n. Since it upper bounds our age
expression ∆(k1,k2), we conclude that age under the earliest k1,
k2 stopping scheme for a two-hop multicast network is also in-
dependent of n for large n and is bounded by a constant as the
number of end nodes increases.

V. EXTENSION TO L HOPS

In this section, we extend our two-hop age results in (27),
(29), and (30) to L hops. Considering an L-hop network, we
have a single source node, n first hop receiver nodes, n2 second
hop receiver nodes and extending in this manner, nL end (L hop)
nodes. The network model for L = 2 is shown in Fig. 1 and it is
generalized such that each of n nodes of the first hop is tied to n
further nodes making n2 second hop nodes and similarly, each
of these n2 second hop nodes is further connected to n nodes
forming n3 end nodes, and so on, for L hops.

Remember that in the two-hop model, we denote the first hop
link delays as X , and the second hop link delays as X̃ . In this
section, in order to accommodate generalL hops, we change our
notation so that the first hop link delay is now denoted as X(1),
the second hop link delay is now denoted as X(2), the `th hop is
denoted as X(`), and the last hop link delay is denoted as X(L).
For each hop `, we utilize the earliest k` transmission policy
such that once hop ` − 1 receiver nodes receive an update they
begin to act as hop ` transmitter nodes and relay the update they
have received to k` of their n children nodes (see Fig. 2). Af-
ter the packet transmission to k` children nodes are completed,
hop ` transmitter nodes start waiting for the next update. Here,
random variable Z` denotes this waiting time upon the comple-
tion of an update until the next one arrives. Thus, the interar-
rival time between two consecutive updates that depart from the
transmitter and start service in hop ` is Y` = X

(`)
k`:n

+ Z`.
Overall this L-hop network implements the earliest {k`}L`=1

transmission scheme. At each hop, we have random variableM`

which is geometrically distributed with parameter p` = k`/n
that represents the number of update cycles between two suc-
cessive updates that arrive at a receiver in hop `. The interarrival
time between two consecutive updates that leave service in hop
` without being preempted can be written as

S` =

M∑̀
i=1

(Y`)i =

M∑̀
i=1

(X
(`)
k`:n

+ Z`). (31)

A receiver node in hop ` immediately transmits an update it re-
ceives to its children nodes in hop `+ 1. Therefore, the interar-
rival time between two consecutive successful updates that leave
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service in hop `, S`, is equal to the interarrival time between
two consecutive updates that arrive in hop `+ 1, R`+1. We have
R`+1 = S`.

The last hop in this L-hop network can be seen as an ap-
plication of our building block problem. In the building block
problem, there is a source node and an end node. When this is
applied to the last hop of the L-hop network, the source node
is an arbitrary receiver node in hop L − 1, and the end node
is an arbitrary receiver node in hop L. Interarrival time of up-
dates that arrive exogenously at the source node in the building
block problem, R, is now R = SL−1, and the interarrival time
between successful updates that arrive at the end node in the
building block problem, S, is now S = SL. In addition, we
know that SL =

∑ML

i=1(YL)i. Finally, the service time in the
building block problem, X̄ , is now X̄ =

∑L
`=1 X̄`, where X̄`

is the service time at each hop. We know that for an update
packet to reach the end nodes, it has to be among the earliest
k1, · · ·, kL nodes in all hops. Thus,

∑L
`=1 X̄` term captures the

expected time spent in the system for a successful update with-
out being preempted until it reaches one of the end nodes. The
average age of an end node for an L-hop system is given in the
following theorem.

Theorem 3: For the general L-hop network with the earliest
{k`}L`=1 stopping scheme, the average age at an individual end
node at hop L is

∆{k`}L`=1
=

L∑
`=1

1

k`

k∑̀
i=1

E[X
(`)
i:n ]

+
2n− kL

2kL
(E[X

(L)
kL:n] + E[ZL])

+
V ar[X

(L)
kL:n + ZL]

2(E[X
(L)
kL:n] + E[ZL])

. (32)

Proof: Since the last hop of the general L-hop network can
be seen as a building block, we can apply (10) to the setting here
by inserting Y = YL and X̄ =

∑L
`=1 X̄`. Then, (32) follows

after similar calculations as in Theorems 1 and 2. �
Similar to Corollary 3, the age of the last hop can be upper

bounded by assuming that the interarrival times at each hop are
exponentially distributed.

Corollary 5: For the general L-hop network, assuming ex-
ponential interarrivals to each hop with mean E[R`], average
age at an end node under {k`}L`=1 stopping scheme is given by

∆′{k`}L`=1
=

L∑
`=1

1

k`

k∑̀
i=1

E[X
(`)
i:n ]

+
2n− kL

2kL

L∑
`=1

E[X
(`)
k`:n

]

L−1∏
i=`

E[Mi]

+
V ar[X

(L)
kL:n] +

(∑L−1
`=1 E[X

(`)
k`:n

]
∏L−1
i=` E[Mi]

)2
2(
∑L
`=1E[X

(`)
k`:n

]
∏L−1
i=` E[Mi])

.

(33)

Proof: Using Lemma 1, (32) can be upper bounded with
exponential interarrivals to the nodes at hop L − 1, where

mean interarrival time is E[RL] = E[SL−1]. When the in-
terarrivals are exponentially distributed, we have ZL = SL−1
and therefore, E[ZL] = E[SL−1]. In addition, with expo-
nential interarrivals, ZL is independent of XkL:n. Then, we
have V ar[X

(L)
kL:n + ZL] = V ar[X

(L)
kL:n] + V ar[ZL], where

V ar[ZL] = E[SL−1]2. Now, the upper bound for (32) can be
written as

∆′{k`}L`=1
=

L∑
`=1

1

k`

k∑̀
i=1

E[X
(`)
i:n ]

+
2n− kL

2kL
(E[X

(L)
kL:n] + E[SL−1])

+
V ar[X

(L)
kL:n] + E[SL−1]2

2(E[X
(L)
kL:n] + E[SL−1])

. (34)

Now, let us calculate E[SL−1]. We can write SL−1 as

SL−1 =

ML−1∑
i=1

(YL−1)i =

ML−1∑
i=1

(X
(L−1)
kL−1:n

+ ZL−1)i, (35)

where YL−1 is the interarrival time between updates that start
service in hop L− 1. Then,

E[ZL] = E[SL−1]

= E[ML−1]E[X
(L−1)
kL−1:n

] + E[ML−1]E[ZL−1]. (36)

Similarly, E[ZL−1] can be written in terms of the variables in
hop L− 2. We continue with this recursive calculation until the
second hop, where we have E[Z2] = E[M1]E[X

(1)
k1:n

]. As a
result, we have

E[SL−1] =E[ML−1]E[X
(L−1)
kL−1:n

] + · · ·

+ E[ML−1]E[ML−2]· · ·E[M2]E[M1]E[X
(1)
k1:n

]

=

L−1∑
`=1

E[X
(`)
k`:n

]

L−1∏
i=`

E[Mi]. (37)

Adding E[XL−1
kL−1:n

] to (37), we have

E[XL−1
kL−1:n

] + E[SL−1] =

L∑
`=1

E[X
(`)
k`:n

]

L−1∏
i=`

E[Mi]. (38)

Finally, by inserting (37) and (38) into (34), we obtain (33). �
Corollary 5 introduces an upper bound for average age of an

update that is generated at the source node and delivered to any
one of the end nodes in hop L. Note that the total number of
nodes in the L-hop network is

∑L
`=0 n

l. The result of Corol-
lary 5 holds for any n. Next, we characterize the effect of in-
creasing n on the scaling of average age.

Corollary 6: Assume n is large and n > k` and let k` =
α`n for ` = 1, · · ·, L. Under exponential interarrival assumption
to each hop with mean E[R`], and shifted exponential service
timesX(`) with (λ`, c`), the average age for the earliest {k`}L`=1

scheme can be approximated as

∆′{k`}L`=1
≈

L∑
`=1

(
c` +

1

λ`
+

1− α`
α`λ`

log(1− α`)
)
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number of hops L α∗1 α∗2 α∗3 α∗4
L = 1 0.732 - - -
L = 2 0.615 0.921 - -
L = 3 0.626 0.832 0.965 -
L = 4 0.635 0.837 0.901 0.935

Table 1. Optimal αi values for L-hop network when all link delays are shifted
exponentials with (1, 1).

+
2− αL

2αL

L∑
`=1

[(
c` −

1

λ`
log(1− α`)

) L−1∏
i=`

1

αi

]

+

(∑L−1
`=1

[(
c` − 1

λ`
log(1− α`)

)∏L−1
i=`

1
αi

])2
2
∑L
`=1

[(
c` − 1

λ`
log(1− α`)

)∏L−1
i=`

1
αi

] .

(39)
The proof of this corollary is similar to that of Corollaries 2
and 4. We use the first and second moments of order statistics
of shifted exponential random variables and make necessary ap-
proximations for large n.

In conclusion, under the assumption that middle nodes re-
ceive update packets with exponential interarrivals with means
equal to E[R`], the average age attained at the end nodes de-
pends on n only through ratios α`. Thus, this result together
with Lemma 1 imply that the average age of an end node in an
L-hop multicast network implementing the earliest {k`} trans-
mission scheme is bounded by a constant as n increases.

VI. NUMERICAL RESULTS

In this section, we provide simple numerical results. In or-
der to optimize the age of information at the end nodes, we
need to select appropriate ki values, i.e., optimum ratios α∗i , at
each hop. From [30], we know that in the single-hop multicast
network α∗ is 0.732 when link delays are shifted exponential
with parameters (λ, c) = (1, 1). For the two-hop network with
(λ, c) = (λ̃, c̃) = (1, 1), we obtain α∗1 = 0.615 and α∗2 = 0.921.
This shows that when all link delays are statistically identical, to
achieve a good age performance, we need to be more aggressive
in the second hop than the first hop (see [32]).

When we add a third hop, we see that the optimal thresh-
old results follow similar trends. Let us denote the link delay
parameters of the third hop as (

˜̃
λ, ˜̃c) for tractability. When all

link delays are statistically identical, i.e., shifted exponentials
with parameters (1,1), we have α∗1 = 0.626, α∗2 = 0.832 and
α∗3 = 0.965. In a similar fashion, when we add a fourth hop, we
have α∗1 = 0.635, α∗2 = 0.837, α∗3 = 0.901 and α∗4 = 0.935.
Thus, the observation we have made for two-hop multicast net-
works, i.e., that we need to be more aggressive in the further
hops to achieve a lower average age holds true for four-hop mul-
ticast networks as well. These results are summarized in Table 1.

Returning to the two-hop network, we observe that α2 is re-
sponsive to the changes in the parameters of the first hop. This is
intuitive because as k1 varies, the mean interarrival time for the
second hop changes. In Figs. 7(a) and 7(b), we plot the age as a
function of k2 (equivalently α2) for a fixed set of second hop pa-
rameters and for a fixed set of first hop parameters, respectively.
As shown in Fig. 7(a), for the same (λ̃, c̃) pair, when the mean
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Fig. 7. ∆′
(k1,k2)

as a function of k2 for n = 500. ◦ marks the minimized

average age ∆′
(k1,k2)

: (a) c = 1 and (λ̃, c̃) = (1, 1) for varying λ and (b)

c̃ = 1 and (λ, c) = (1, 1) for varying λ̃.

interarrival time gets lower by increasing λ, α∗2 gets lower as
well. Knowing that the next update arrival is not far away, mid-
dle nodes tend to wait for the next one instead of sending the
current packet to more and more end users when the arrivals are
frequent. This is exactly what we have observed in the building
block problem with exogenous update arrivals.

In Fig. 7(b) we observe that as the service rate of the second
hop, λ̃, increases for a given λ, α∗2 increases as well. This is intu-
itive because when λ is fixed, the interarrival time to the middle
nodes stays constant as opposed to their increasing service rate.
Thus, they relay their current packet to more end nodes.

In Figs. 8(a) and 8(b), we plot the age as a function of k1
(equivalently α1) when the second hop parameters are fixed
and when the first hop parameters are fixed, respectively. In
Fig. 8(a), α∗1 shows a similar trend as in α∗2 in Fig. 7(b) but
α∗1 experiences bigger changes as λ increases. Fig. 8(b) shows
the response of α∗1 to changes in λ̃ when λ is fixed. Here, we
observe rather minor reaction from α∗1 when the service perfor-
mance of the second stage varies.

In Fig. 9 we repeat the numerical analysis in Fig. 7 when
the link delays are exponential, i.e., shift parameters c = 0 and
c̃ = 0. We observe similar trends for k∗2 as in Fig. 7. The only
difference is now that the link delays are all exponential, we get
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Fig. 8. ∆′
(k1,k2)

as a function of k1 for n = 500. ◦ marks the minimized

average age ∆′
(k1,k2)

: (a) c = 1 and (λ̃, c̃) = (1, 1) for varying λ and (b)

c̃ = 1 and (λ, c) = (1, 1) for varying λ̃.

k∗1 = 1 for all cases. This is also observed in [30] and in the
building block problem when µ tends to ∞ and is because of
the memoryless property of the exponential distribution.

In Fig. 10 we analyze the effects of the link delay parameters
λ and λ̃ on ∆′(k1,k2). In both cases we see that larger service

rates (large λ and λ̃), i.e., lower link delays, lead to smaller av-
erage age at the end nodes.

In Fig. 11 we plot the three-hop version of Fig. 7. As shown
in Fig. 11, when the mean interarrival time decreases at the third
hop through a service rate increase in either one of the first two
hops α∗3 gets smaller. One other observation from Fig. 11 is the
fact that although we change λ values in Fig. 11(a) and λ̃ values
in Fig. 11(b), their effects on the third hop are quite similar. In
either case we observe a similar trend, i.e., k3 value decreases
as λ or λ̃ increases.

VII. APPENDIX: PROOF OF LEMMA 1

In this section, we prove Lemma 1, first, for the two-hop sce-
nario, then we extend the proof to the L-hop case. We use [9,
Thm. 2] which, for a G/G/1/1 system, requires interarrival times
to have DMRL property and service times to have NBUE prop-
erty. Note that the updates that depart the service at the first
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Fig. 9. ∆′
(k1,k2)

as a function of k2 for n = 500 when link delays are ex-
ponential. ◦ marks the minimized average age ∆′

(k1,k2)
: (a) c = 0 and

(λ̃, c̃) = (1, 0) for varying λ, (b) c̃ = 0 and (λ, c) = (1, 0) for varying λ̃.

hop, S1 are considered to be the arrivals at the second hop, R2.
Then, between a transmitter and a receiver at the second hop, we
have interarrivalsR2 =

∑M1

i=1(Xk1:n)i and service times X̃k2:n.
In order to employ [9, Thm. 2], we need to show that R2 has
DMRL property and X̃k2:n has NBUE property. It is sufficient
to show that both R2 and X̃k2:n have log-concave density, since
log-concavity implies both DMRL and NBUE properties [31].

It is given in [33, Thm. 1.C.54] that the order statistics of i.i.d.
log-concave random variables is log-concave as well. Since
shifted exponential has a log-concave density, we conclude that
the second hop service time X̃k2:n has a log-concave density.

In order to show the log-concavity of R2, we use the fact
that a function is log-concave if and only if it is a Polya Fre-
quency function of order 2 [31, Proposition 21.B.8], which is
denoted by PF2. We know that the geometric random variable
M1 and shifted exponential random variables Xk1:n are log-
concave, and hence they have PF2 densities. In addition, we
know that M1 is independent of Xk1:n. Now, we can apply [34,
Thm. 6] that states that if Xk1:n and M1 have PFk densities,
and M1 is independent of Xk1:n, then R2 =

∑M1

i=1(Xk1:n)i has
a PFk density as well. Since [34, Thm. 6] is stated for any k,
it holds for k = 2, and we conclude that R2 has a PF2 density,
which, in turn, means that R2 is log-concave.
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Fig. 10. ∆′
(k1,k2)

as a function of link delay parameters λ and λ̃ for n = 500:

(a) ∆′
(k1,k2)

as a function of λ, (b) ∆′
(k1,k2)

as a function of λ̃.

We have proved that interarrivals to the second hop are
DMRL and service time of the second hop is NBUE. Hence, us-
ing [9, Thm. 2] average age of the second hop is upper bounded
by a system where interarrivals are exponential with E[R2]. In
the third hop, service times are i.i.d. with the service times
at the second hop. Therefore, service time of the third hop
is NBUE as well. The interarrivals at the third hop are now
R3 =

∑M2

i=1(X̃k2:n + Z2)i. In order to calculate the upper
bound in the second hop, we have already assumed that the in-
terarrivals, R2, are exponential which resulted in Z2 = R2 to be
exponential as well. Then, R3 can be shown to be log-concave
using similar ideas above and for exponential Z2. This reason-
ing holds for each hop in an L-hop system, which proves the
applicability of Lemma 1 to an L-hop system as well.

VIII. CONCLUSIONS

We studied the age of information in a multihop multicast
network with a single source updating nL end nodes where L
denotes the number of hops. We showed that when the earliest
k` transmission policy is implemented at each hop `, the age of
information at the end nodes can be upper bounded by a constant
that is independent of n. We explicitly characterized an upper
bound for an L-hop multicast network, and then determined the
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Fig. 11. ∆′
(k1,k2,k3)

as a function of k3 for n = 100. ◦ marks the minimized

average age ∆′
(k1,k2,k3)

: (a) c = 1 and (λ̃, c̃) = (
˜̃
λ, ˜̃c) = (1, 1) for

varying λ and (b) c̃ = 1 and (λ, c) = (
˜̃
λ, ˜̃c) = (1, 1) for varying λ̃.

optimal stopping thresholds k` for arbitrary shifted exponential
link delays. We note that even when the link delays are expo-
nential we find k∗1 = 1 and k∗` > 1 in hops ` > 1. This is
because even when there is no shift in service, the random wait-
ing time under exogenous arrivals introduces a random shift to
the exponential service distribution in hops ` > 1.
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