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Optimality of Beamforming in
Fading MIMO Multiple Access Channels
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Abstract—We consider the sum capacity of a multi-input
multi-output (MIMO) multiple access channel (MAC) where
the receiver has the perfect channel state information (CSI),
while the transmitters have either no or partial CSI. When the
transmitters have partial CSI, it is in the form of either the
covariance matrix of the channel or the mean matrix of the
channel. For the covariance feedback case, we mainly consider
physical models that result in single-sided correlation structures.
For the mean feedback case, we consider physical models that
result in in-phase received signals. Under these assumptions, we
analyze the MIMO-MAC from three different viewpoints. First,
we consider a finite-sized system. We show that the optimum
transmit directions of each user are the eigenvectors of its
own channel covariance and mean feedback matrices, in the
covariance and mean feedback models, respectively. Also, we find
the conditions under which beamforming is optimal for all users.
Second, in the covariance feedback case, we prove that the region
where beamforming is optimal for all users gets larger with the
addition of new users into the system. In the mean feedback
case, we show through simulations that this is not necessarily
true. Third, we consider the asymptotic case where the number
of users is large. We show that in both no and partial CSI cases,
beamforming is asymptotically optimal. In particular, in the case
of no CSI, we show that a simple form of beamforming, which
may be characterized as an arbitrary antenna selection scheme,
achieves the sum capacity. In the case of partial CSI, we show
that beamforming in the direction of the strongest eigenvector of
the channel feedback matrix achieves the sum capacity. Finally,
we generalize our covariance feedback results to double-sided
correlation structures in the Appendix.

Index Terms—Multi-user MIMO, MIMO multiple access chan-
nel, partial CSI, covariance feedback, mean feedback, optimality
of beamforming, large system analysis.

I. INTRODUCTION

THE use of multiple antennas at both transmitters and
receivers in wireless communications promises very large

information rates. In [3], Telatar showed that in a single-
user system, when the transmitter does not know the state of
the fading channel, the optimum transmit covariance matrix
is proportional to the identity matrix, which is full-rank. In
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order to achieve the capacity, either vector coding or parallel
processing of scalar codes is needed. As stated in [3], vector
coding will result in lower probability of error but higher
complexity as compared to parallel scalar coding, which
already is very complex [4].

Beamforming is a scalar coding strategy in which the
transmit covariance matrix is unit-rank. In beamforming, the
symbol stream is coded and multiplied by different coeffi-
cients at each antenna before transmission. Since the available
mature scalar codec technology can be used, beamforming is
highly desirable. However, in the setting of [3], where there
is no CSI at the transmitters and the aim is to achieve the
ergodic capacity, the optimum transmit covariance matrix is
full-rank, and therefore beamforming is not optimal.

Although beamforming is not optimal for the no CSI
case, it is shown by [5], [6], [7] for single-sided correlation
structure, and by [8] for double-sided correlation structure that
beamforming is conditionally optimal, in a single-user setting,
when the transmitter has the partial knowledge of the channel.
For the covariance feedback case, the fact that the optimal
transmit covariance matrix and the channel covariance matrix
have the same eigenvectors was shown in [5] for a multi-
input single-output (MISO) system, and in [6] for a MIMO
system. The conditions on the channel covariance matrix that
guarantee that the transmit covariance matrix is unit-rank, and
therefore beamforming is optimal, are identified in [6], [7].
This result is analogous to identifying the conditions on the
channel state space and the average power in classical water-
filling that guarantee that only one channel is filled as a result
of having either a low power constraint or one very strong
channel. In [8], these conditions are generalized to the case
where the receive antennas are also correlated. For the case
when beamforming is not optimal, algorithmic solutions are
given in [9], [10], [11] in order to find the optimal power
allocation strategy in a single-user MIMO system when the
channel has only transmit antenna correlations. In [12], [13],
we have proved the global convergence of the single-user
algorithm proposed in [10], [11]. For the mean feedback case,
the eigenvectors of the optimal transmit covariance matrix
were shown to be the same as the eigenvectors of the channel
mean matrix for a MISO system in [5] and for a MIMO system
in [6]. Using this, the conditions on the channel mean matrix
that guarantee that the transmit covariance matrix is unit-rank,
and therefore beamforming is optimal, are identified in [6].

In this paper, we consider the sum capacity point of a
multi-user MIMO multiple access capacity region for three
different CSI models, namely, no CSI model, partial CSI
with covariance feedback model, and partial CSI with mean
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feedback model. For the partial CSI with covariance feedback
model, we consider physical scenarios that result in single-
sided correlation structures. We generalize the covariance
feedback model to double-sided correlation structures, where
the receiver correlation is the same for all users, in the
Appendix. For the partial CSI with mean feedback model,
we consider physical scenarios that result in in-phase received
signals, while the most general version of the problem is still
open.

Under these channel assumptions for the MIMO-MAC, our
contributions are three-fold: the analysis of a system with a
finite number of users, determining the effects of increasing
the number of users, and the analysis of a large system. First,
we concentrate on a finite-sized system. We show that, if there
is covariance or mean feedback information at the transmitters,
all users should transmit in the direction of the eigenvectors
of their own covariance or mean feedback matrices. Conse-
quently, we show that, the transmit directions of the users
are independent of the presence of other users, and therefore,
that the users maintain their single-user transmit direction
strategies even in a multi-user scenario1. Then, we identify
the necessary and sufficient conditions for the optimality of
beamforming for all users. This result generalizes the single-
user conditions of [6], [7] to a multi-user setting. In the case
of covariance feedback, these conditions depend only on the
first and second largest eigenvalues of the channel covariance
matrix of each user, and they form a region in a space whose
dimension is twice the number of users. If these conditions
are satisfied, beamforming is optimal for all users. In the case
of mean feedback, these conditions depend only on the sole
non-zero eigenvalue of the unit-rank channel mean matrix of
each user, and they form a region in a space whose dimension
is equal to the number of users. Similarly, if these conditions
are satisfied, beamforming is optimal for all users.

We, then, consider the effects of increasing the number of
users on the region of channel parameters where beamforming
is optimal. Here, in the covariance feedback case, we prove
that this region gets larger as new users are added to the sys-
tem. Although adding users increases the overall complexity
of the system, being able to beamform for a greater range of
channel values decreases the complexity. In the mean feedback
case, this result does not necessarily hold. Nevertheless, we
see through simulations that as the number of users gets large
enough, the region where beamforming is optimal grows with
the addition of new users, in the mean feedback case as well.
These results raise the question of whether the region where
beamforming is optimal spans the entire parameter space as
the number of users grows to infinity. Therefore, next, we
analyze our problem from an asymptotically large system
viewpoint.

The optimality of beamforming in a MIMO-MAC system
where the channel is deterministic and fully known to the
transmitters is investigated in [15], where it was shown that
if the number of users is much larger than the number of
receive antennas, then unit-rank transmission is optimal for
almost all users. Motivated by our result described above and

1During the review process of this paper, we were informed of [14], where
for the covariance feedback case, this result is stated without proof.

the result of [15] that beamforming is optimal asymptotically
(with respect to the number of users) in a deterministic multi-
user MIMO-MAC, we ask the question whether beamforming
is unconditionally optimal asymptotically in our case as well,
where the receiver has the perfect CSI, but the transmitters
have no or partial CSI. When there is no CSI at the transmit-
ters, it is counter-intuitive to think that beamforming would be
optimal. Confirming this intuition, [3] already showed that in a
finite-sized multi-user system with no CSI at the transmitters,
the optimum transmit covariance matrices are full-rank for
all users. However, we show that, in an asymptotically large
system, unit-rank transmit covariance matrices are optimal for
all users. The beamforming scheme we use in this case is
simpler than usual; it may be characterized as an arbitrary
antenna selection scheme, where for each user, only one
antenna is used for transmission and that antenna is chosen
arbitrarily.

When the transmitters have the partial CSI in the form of ei-
ther covariance or mean feedback, we show that the asymptotic
optimality of beamforming still holds. In these cases however,
arbitrary antenna selection scheme is no longer optimal. In
the covariance feedback setting, each user beamforms in the
direction of the strongest eigenvector of its channel feedback
covariance matrix. As opposed to a finite-sized system, where
beamforming may or may not be optimal depending on the
eigenvalues of the channel covariance matrices, we show
here that for an asymptotically large system, beamforming
is always optimal. In the mean feedback setting, each user
beamforms in the direction of the eigenvector corresponding
to the sole non-zero eigenvalue of its channel feedback mean
matrix. Similar to the covariance feedback case, beamforming
is optimal asymptotically irrespective of the values of the
mean feedback information. Asymptotic analysis has been
used in the literature before, e.g., by [16], [17], [18], where
it yielded simple characterizations to complex systems. In our
model, with multiple users, with multiple transmit and receive
antennas, and with fading in the channel, the optimal transmit
strategy turns out to be simple beamforming, when only the
number of users goes to infinity.

Considering all three points of view, this paper provides
a complete extension from single-user to multi-user systems
with finite and infinite numbers of users, including the tran-
sient behavior of the system with increasing number of users,
for MIMO systems with partial CSI at the transmitters in the
form of covariance and mean information.

II. SYSTEM MODEL

We consider a multiple access channel with multiple trans-
mit antennas at every user and multiple receive antennas at
the receiver. The channel between user k and the receiver
is represented by a random matrix Hk with dimensions of
nR×nT , where nR and nT are the number of antennas at the
receiver and at the transmitter, respectively2. The receiver has
the perfect knowledge of the channel, while the transmitters
have only the statistical model of the channel. Each transmitter

2Although we consider the case where all transmitters have the same
number of antennas, our results immediately extend to the cases where the
transmitters have different number of antennas.
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sends a vector xk, and the received vector is

r =
K∑

k=1

Hkxk + n (1)

where K is the number of users, n is a zero-mean, identity-
covariance complex Gaussian vector, and the entries of Hk are
complex Gaussian random variables. Let Qk = E[xkx

†
k] be

the transmit covariance matrix of user k, which has an average
power constraint of Pk, tr(Qk) ≤ Pk.

We investigate three different statistical models. The first
one is the “no CSI” model in which the transmitters only know
the distribution of the channel state while the parameters of
the distribution are not known. In this case, the entries of Hk

are i.i.d., zero-mean, unit-variance complex Gaussian random
variables. This model is used in [3], [4], [16].

The second model is the “partial CSI with covariance
feedback" model where each transmitter knows the channel
covariance information of all transmitters, in addition to the
distribution of the channel [19]. In this paper, we assume
that the receiver (e.g., base station) does not have physical
restrictions and therefore, there is sufficient spacing between
the antenna elements on the receiver. If the minimum antenna
spacing is sufficiently large, the correlation introduced by
antenna element spacing is low enough that the fades asso-
ciated with two different antenna elements can be considered
independent3 [20]. We also assume that the signals transmitted
by different antenna elements are correlated, because of the
lack of scatterers around the transmitters. The channel of user
k is written as

Hk = ZkΣ
1/2
k (2)

where the entries of Zk are i.i.d., zero-mean, unit-variance
complex Gaussian random variables, and the channel covari-
ance feedback matrix, Σk, is the correlation between the
signals transmitted from the nT transmit antennas of user
k. While writing (2), we separately apply the single-user
model in [19] to every single transmitter-receiver link. Similar
covariance feedback models are used in [5], [6], [7], [9] in the
single-user setting. From this point on, we will refer to matrix
Σk as the channel covariance feedback matrix of user k.

The third model we investigate is the “partial CSI with
mean feedback” model where each transmitter knows the
channel mean information of all transmitters, in addition to
the distribution of the channel. This model is used in [5], [6],
[21], [22], [23]. In this model, the transmitters have line-of-
sight component with the receiver. As a result, the entries of
the channel matrix are independent with a non-zero mean. In
this case, the channel of user k can be written as

Hk = Hμk
+ Zk (3)

where the entries of Zk are i.i.d., zero-mean, unit-variance
complex Gaussian random variables, and Hμk

is the mean
information representing the line-of-sight component of the
channel. This Ricean channel is modeled to be of unit-rank

3We refer the reader to the Appendix, for the extension of our results to
the case where the channel has double-sided correlation structure, i.e., to the
case where the signals arriving at the receiver are correlated as well.

[23], and therefore, the mean matrix takes the form

Hμk
= aRk

a†
Tk

(4)

where aRk
and aTk

are the array response vectors at the
receiver and the transmitter, respectively. In this most general
case of the mean feedback model, the optimization problem
that arises in the sum capacity calculation seems intractable.
In order to simplify the mathematics and obtain a tractable
optimization problem, we assume that the user signals arrive
at the base station in-phase, i.e., aRk

= aR, for all k. This
mathematical simplification models a physical system where
the transmitters are far away from the receiver and are close
to each other. This can occur, for instance, if a set of closely
located transmitters have a line-of-sight “openning” with the
receiver. From this point on, we will refer to matrix Hμk

as
the channel mean matrix of user k.

III. FINITE SYSTEM ANALYSIS

The sum capacity of a multi-user MIMO-MAC is given as,

Csum = max
tr(Qk)≤Pk,Qk�0

k=1...K

E

[
log
∣∣∣InR +

K∑
k=1

HkQkH
†
k

∣∣∣
]

(5)

where E[·] is the expectation operator with respect to the
channel matrices of all users conditioned on the covariance or
mean feedback, | · | is the determinant operator, tr(·) denotes
the trace of a matrix, and Qk � 0 denotes positive semi-
definite Qk. In this section, we will find the optimum transmit
directions of the users, and the region where beamforming is
optimal for all users, under various assumptions on the CSI
available at the transmitters, for a multi-user MIMO-MAC
with a finite number of users.

For a single-user system with no CSI at the transmitter
and identity channel covariance matrix, i.e., Σ = I, Telatar
[3] showed that the capacity is achieved when the transmitter
divides its power equally over its antennas, i.e., the optimal
transmitter covariance matrix, Q, is equal to (P/nT )I. Clearly,
in this setting, beamforming is not optimal, as the transmit
covariance matrix is full-rank. For the multi-user case, [3]
defines a stacked channel matrix as Ĥ = [H1, · · · ,HK ] and
writes the sum capacity as

Csum = E

[
log
∣∣∣InR +

KP

KnT
ĤĤ†

∣∣∣]

= E

[
log
∣∣∣InR +

P

nT

K∑
k=1

HkH
†
k

∣∣∣
]

(6)

This means that in the multi-user setting as well, the sum
capacity maximizing transmit covariance matrix for each user
is proportional to identity, i.e., Qk = (P/nT )I, for all k.
Therefore, it is clear that, beamforming is not optimal for any
user in a finite-sized multi-user system when the transmitters
do not have any CSI.

A. Covariance Feedback at the Transmitters

1) Transmit Directions: In a single-user system with partial
CSI in the form of channel covariance matrix at the transmitter,
the capacity is no longer achieved by an identity transmit
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covariance matrix. In this case, the problem becomes that of
choosing a transmit covariance matrix Q, which is subject
to a trace constraint representing the average transmit power
constraint,

C = max
tr(Q)≤P,Q�0

E
[
log | InR + HQH†|] (7)

The channel covariance matrix Σ, which is known at the trans-
mitter, and the transmit covariance matrix Q have the eigen-
value decompositions Σ = UΣΛΣU†

Σ, and Q = UQΛQU†
Q,

respectively. Here, ΛΣ and ΛQ are the diagonal matrices of
ordered eigenvalues of Σ, and Q, and UΣ, and UQ are unitary
matrices.

Reference [6], [24] showed that the eigenvectors of the
transmit covariance matrix must be equal to the eigenvectors
of the channel covariance matrix, i.e., UQ = UΣ. References
[9], [10], [13] proposed numerical optimization based methods
to find ΛQ, the power put by the transmitter along the eigen-
directions. References [6] and [7] showed that under certain
conditions on the covariance feedback matrix Σ, the power
matrix ΛQ has only one non-zero diagonal element, i.e., the
optimal transmit covariance matrix is unit-rank, and therefore
beamforming in the direction of the eigenvector corresponding
to this non-zero eigenvalue, is optimal.

In this paper, for a multi-user setting with a finite number of
users, where there is covariance feedback at the transmitters,
we prove that all users should transmit along the eigenvectors
of their own channel covariance matrices, regardless of the
power allocation scheme. This is stated in the following
theorem.

Theorem 1: Let Σk = UΣk
ΛΣk

U†
Σk

be the spectral de-
composition of the channel covariance matrix of user k. Then,
the optimum transmit covariance matrix Qk of user k has the
form Qk = UΣk

ΛQk
U†

Σk
, for all users.

Single-user versions of this theorem can be found in [6], [24],
and the multi-user version is stated without proof in [14]. The
proof follows [6] closely, and therefore is omitted here. It can
be found in [25].

The optimization problem in (5) with channel matrices
Hk = ZkΣ

1/2
k = ZkUΣk

Λ1/2
Σk

U†
Σk

can be written as

Csum = max
tr(Qk)≤Pk,Qk�0

k=1,...,K

E

[
log
∣∣∣InR +

K∑
k=1

ZkUΣk
Λ1/2

Σk
U†

Σk

max
tr(ΛQ)≤P

E log
∣∣InR + ZUΣQkUΣk

Λ1/2
Σk

U†
Σk

Z†
k

∣∣∣]
(8)

Using Theorem 1, we can write the optimization problem in
(8) as,

Csum = max
tr(ΛQk

)≤Pk,ΛQk
�0

k=1,...,K

E

[
log
∣∣∣InR +

K∑
k=1

ZkΛQk
ΛΣk

Z†
k

∣∣∣
]

(9)

= max∑nT
i=1 λ

Q
ki

≤Pk,λ
Q
ki

≥0

k=1,...,K

E

[
log
∣∣∣InR +

K∑
k=1

nT∑
i=1

λQ
kiλ

Σ
kizkiz

†
ki

∣∣∣
]

(10)

where zki is the ith column of Zk, i.e., {zki, k =
1, . . . , K, i = 1, . . . , nT } is a set of nR ×1 dimensional i.i.d.,
zero-mean, identity-covariance Gaussian random vectors.

In a MIMO system, a transmit strategy is a combination of
a transmit direction strategy and a transmit power allocation
strategy. A result of Theorem 1 is that the optimal multi-
user transmit direction strategies are decoupled into a set of
single-user transmit direction strategies. However, in general,
this is not true for the optimal transmit power allocation
strategies. The amount of power each user allocates in each
direction depends on both the transmit directions and the
power allocations of other users [13]. Because of this, finding
the conditions under which beamforming is optimal becomes
even more critical in the multi-user case. When beamforming
is optimal, the optimal transmit power allocation strategy for
each user reduces to allocating all of its power to its strongest
eigen-direction, and this strategy does not require the user to
know the channel covariance matrices of the other users.

2) Conditions for the Optimality of Beamforming: In this
section, we identify the conditions for the optimality of
beamforming in a multi-user system with a finite number
of users. References [6] and [7] found these conditions in
a single-user system. For a single-user system, let λΣ

1 and
λΣ

2 denote the largest and second largest eigenvalues of the
channel covariance matrix Σ, respectively. Then, the necessary
and sufficient condition for the optimality of beamforming is
[6]:

PλΣ
2 <

1 − E
[

1
1+PλΣ

1 zT z

]
nR − 1 + E

[
1

1+PλΣ
1 zT z

] (11)

where z is an nR × 1 dimensional Gaussian random vector
with zero-mean and identity-covariance. In this paper, we find
the necessary and sufficient conditions for the optimality of
beamforming for all users in a multi-user setting. Inserting
K = 1 in our results would reduce them to (11). In our results,
the number of conditions equals the number of users. The
condition corresponding to user k depends on the two largest
eigenvalues of the channel covariance matrix of that user, and
the largest eigenvalues of the channel covariance matrices of
all other users. Before stating our theorem in this section, we
need the following lemma.

Lemma 1: When A and Ak are defined as in Theorem 2,
the following identities hold

Ek1 = λΣ
k1E

[
z†k1A

−1zk1

]
=

1
Pk

(
1 − E

[
1

1 + PkλΣ
k1z

T
k1A

−1
k zk1

])
(12)

Eki = λΣ
kiE

[
z†kiA

−1zki

]
, i �= 1

= λΣ
ki

(
nR − K +

K∑
l=1

E

[
1

1 + PlλΣ
l1z

T
l1A

−1
l zl1

])

(13)

A proof of Lemma 1 is given in Appendix A.
Theorem 2: In a MIMO-MAC system where the transmit-

ters have partial CSI in the form of covariance feedback, the
transmit covariance matrices of all users that maximize (10)
have unit-rank (i.e., beamforming is optimal for all users) if
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and only if

PkλΣ
k2 <

1 − E
[

1
1+PkλΣ

k1zk1A
−1
k zk1

]
nR − K +

∑K
l=1 E

[
1

1+PlλΣ
l1zl1A

−1
l

zl1

] (14)

for k = 1, . . . , K , and where A = InR +
∑K

l=1 Plλ
Σ
l1zl1z

†
l1,

Ak = A − PkλΣ
k1zk1z

†
k1, λΣ

ki is the ith largest eigenvalue of
the channel covariance matrix of user k, and zl1 are nR × 1
dimensional i.i.d., Gaussian random vectors with zero-mean
and identity-covariance.

Proof (Theorem 2): The Lagrangian for the optimization
problem in (10), with μk as the Lagrange multiplier of user k
corresponding to its power constraint, is

E

[
log
∣∣∣InR+

K∑
k=1

nT∑
i=1

λQ
kiλ

Σ
kizkiz

†
ki

∣∣∣
]
−

K∑
k=1

μk

(
nT∑
i=1

λQ
ki−Pk

)

(15)

In order to derive the Karush-Kuhn-Tucker (KKT) conditions,
we need the following identity which is proved in [6],

∂

∂x
log |A + xB| = tr

[
(A + xB)−1B

]
(16)

Using this identity, the KKT conditions for user k are

λΣ
kiE

⎡
⎣z†ki

(
I +

K∑
l=1

nT∑
i=1

λQ
li λ

Σ
lizliz

†
li

)−1

zki

⎤
⎦ ≤ μk (17)

for i = 1, . . . , nT . The conditions are satisfied with equality
if the corresponding eigenvalue of the transmit covariance
matrix is non-zero. Beamforming is optimal for all users, if
the inequalities corresponding to i = 1 for k = 1, . . . , K are
satisfied with equality, and the rest of the inequalities remain
as strict inequalities. In this case, λQ

k1 = Pk, for k = 1, . . . , K ,
and all other eigenvalues of the transmit covariance matrices
are zero. We have the following for user k,

Ek1 = λΣ
k1E

[
z†k1A

−1zk1

]
= μk (18)

Eki = λΣ
kiE

[
z†kiA

−1zki

]
< μk, ∀i �= 1 (19)

Equivalently, the conditions for the optimality of beamforming
for all users are

Ek1

Eki
> 1, ∀i �= 1, k = 1, . . . , K (20)

Due to the symmetry in these conditions, we will derive the
condition for user k only. Using Lemma 1 and (20) for user
k, we have

PkλΣ
ki <

1 − E
[

1
1+PkλΣ

k1z
T
k1A

−1
k zk1

]
nR − K +

∑K
l=1 E

[
1

1+PlλΣ
l1z

T
l1A

−1
l zl1

] (21)

for i = 2, . . . , nT . Note that the left hand side is maximized
for i = 2, that is, if the condition for i = 2 holds, then it holds
for all other i, as well. Therefore, inserting i = 2 in (21) gives
the condition in (14) for user k. �

Note that inserting K = 1 in (14), we obtain the condition
in (11), which is derived in [6]. In our case, the right hand side
of (14) depends only on the largest eigenvalues of all users.

Therefore, in order to have the optimality of beamforming, a
combination of the largest eigenvalues of all users induce an
upper bound on the second largest eigenvalues of all users. If
the second largest eigenvalues of all users satisfy (14), then
beamforming is optimal for all users.

One important issue in the analysis of the region where
beamforming is optimal, is the change in the region with
varying numbers of users. In the next theorem, we show
that the region where beamforming is optimal grows with the
addition of new users into the system.

Theorem 3: In a MIMO-MAC system where the transmit-
ters have partial CSI in the form of covariance feedback,
the region where beamforming is optimal gets larger by the
addition of new users.

Proof (Theorem 3): From (20), beamforming is optimal for
all users if and only if

λΣ
k2 <

λΣ
k1E

[
z†k1A

−1zk1

]
E
[
z†k2A−1zk2

] , k = 1, . . . , K (22)

Note that zk2 is independent of A, and has identity covariance.
Therefore, the denominator of the right hand side of (22)
becomes E[tr(A−1)]. Let us define the “boundary function”
fk(λ) as

fk(λ) =
λΣ

k1E[z†k1A
−1zk1]

E[tr(A−1)]
, k = 1, . . . , K (23)

where λ = [λΣ
11, λ

Σ
21, . . . , λ

Σ
K1]

T contains the largest eigen-
values of the covariance feedback matrices of all users. Then,
beamforming is optimal for all users if and only if

λΣ
k2 < fk(λ), k = 1, . . . , K (24)

We will show that, fk(λ) increases in every component of
the vector λ, for all k. This will prove that, when a user is
added to the system, i.e., the eigenvalue of the corresponding
user is increased to a positive number from zero, the region
in which beamforming is optimal for all users increases as
long as the the condition for the new user is also satisfied. In
order to prove that each fk(λ) increases in λ, we will prove
that every component of the vector of boundary functions,
f(λ) = [f1(λ), . . . , fK(λ)]T , increases in λ. Let us define
Z̄ = [z11, z21, . . . , zK1], and Λ̄ and P̄ as diagonal matrices
having {λΣ

11, λ
Σ
21, . . . , λ

Σ
K1} and {P1, P2, . . . , PK} along their

diagonals, respectively. Then,

f(λ) =
diag

{
E
[
Λ̄1/2Z̄†A−1Z̄Λ̄1/2

]}
E [tr(A−1)]

(25)

where diag{·} is the vector composed of the diagonal elements
of its argument, and A can be expressed in terms of Z̄,
P̄, and Λ̄ as A = I + Z̄P̄Λ̄Z̄†. Note that the expectation
of the (k, l)th off-diagonal element of the random matrix
Λ̄1/2Z̄†A−1Z̄Λ̄1/2 is zero. The reason for this is that when
the expectation is expressed as an integral, the contribution to
the integral at zl1 is cancelled by the contribution at −zl1,
due to the odd function property of λΣ

k1z
†
k1A

−1zl1. Note also
that, since λΣ

l1zl1z
†
l1 = λΣ

l1(−zl1)(−zl1)†, the matrix A and
the value of the probability density function are the same for
zl1 and −zl1. Hence, we conclude that E[Λ̄1/2Z̄†A−1Z̄Λ̄1/2]
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is diagonal, and therefore its diagonal elements are the same
as its eigenvalues.

Now, we will show that the eigenvalues of
E[Λ̄1/2Z̄†A−1Z̄Λ̄1/2] increase in λ. We will show this
in two steps. First, we will show that the eigenvalues
of P̄Λ̄1/2Z̄†A−1Z̄Λ̄1/2, for any given realization of Z̄,
increase in λ, and then we will show that the eigenvalues
of E[P̄Λ̄1/2Z̄†A−1Z̄Λ̄1/2] increase in λ. This immediately
implies that the eigenvalues of E[Λ̄1/2Z̄†A−1Z̄Λ̄1/2]
increase in λ. First consider a fixed realization of the random
matrix Z̄. Note that,

Z̄P̄Λ̄Z̄† =
K∑

k=1

PkλΣ
k1zk1z

†
k1 (26)

If we increase any one of λΣ
k1, k = 1, . . . , K , to (λΣ

k1)
′
, this

can be seen as an addition of the positive semidefinite matrix
Pk

(
(λΣ

k1)
′ − λΣ

k1

)
zk1z

†
k1 to the summation in (26). Using the

corollary to Weyl’s monotonicity theorem [26, page 181-182]
which states that all eigenvalues of a Hermitian matrix increase
if a positive semidefinite matrix is added to it, we can conclude
that the eigenvalues of Z̄P̄Λ̄Z̄† increase in λ for any fixed Z̄.
Now, note that, if we denote the eigenvalues of Z̄P̄Λ̄Z̄† as
αi, then the eigenvalues of A−1Z̄P̄Λ̄Z̄† are given by αi

1+αi
.

Further, the eigenvalues of P̄Λ̄1/2Z̄†A−1Z̄Λ̄1/2 are either
αi

1+αi
or 0, depending on the dimensions of Z̄. Therefore,

we conclude that when λ increases, all αi increase as shown
above, and therefore all αi

1+αi
increase as well.

Until now, we have shown that the eigenvalues of the
random matrix P̄Λ̄1/2Z̄†A−1Z̄Λ̄1/2 increase in λ. Next,
we will show that the eigenvalues of the expectation
E[P̄Λ̄1/2Z̄†A−1Z̄Λ̄1/2] increase in λ as well. We note that
this expectation can be written as a positive weighted sum of
positive semidefinite Hermitian matrices P̄Λ̄1/2Z̄†A−1Z̄Λ̄1/2

for all realizations of the random matrix Z̄. An increase in λ,
can again be seen as an addition of a positive semidefinite
matrix to the expectation. Therefore, invoking the corollary to
Weyl’s monotonicity theorem [26, page 181-182] once again,
we conclude that the eigenvalues of E[P̄Λ̄1/2Z̄†A−1Z̄Λ̄1/2],
and consequently the eigenvalues of E[Λ̄1/2Z̄†A−1Z̄Λ̄1/2]
increase in λ. We also note that E

[
tr(A−1)

]
decreases in

λ, since the eigenvalues of A−1, i.e., 1
1+αi

, decrease as λ
increases. Therefore, the ratios on the right hand side of (25),
and therefore, f(λ), increase in λ. �

Theorem 3 shows that with the addition of more and more
users into the system, beamforming becomes optimal for more
and more channel covariance matrices. Whether the growth
in the region where beamforming is optimal is bounded, or
whether beamforming is unconditionally optimal for very large
numbers of users in a fading environment will be addressed
in Section IV.

B. Mean Feedback at the Transmitters

1) Transmit Directions: As in the case of covariance feed-
back, for a single-user system with partial CSI in the form of
the channel mean matrix at the transmitter, the capacity is no
longer achieved by an identity transmit covariance matrix. The
optimization problem in this case is the same as (7), with the

difference that, in this setting, the channel covariance matrix
is identity, i.e., Σ = I, and the channel mean matrix Hμ

is fedback to the transmitter. With the assumption that Hμ is
unit-rank, [5], [6] showed that the optimal transmit covariance
matrix Q that solves (7) can be written as

Q = UμΛQU†
μ (27)

where the first column of the unitary matrix Uμ is the
eigenvector corresponding to the non-zero eigenvalue of Hμ,
and the remaining columns are arbitrary, with the restriction
that the columns of Uμ are orthonormal.

In this paper, we show that, in a multi-user setting, every
user should transmit along the eigenvectors of its own channel
mean matrix. In the multi-user setting, let the singular value
decomposition of the channel mean matrix of user k be

Hμk
= Uμk

Λμk
V†

μk
(28)

Since Hμk
is a unit-rank matrix as in (4), the first column

of Uμk
can be chosen as aR

|aR| ; and the rest of the columns
can be chosen arbitrarily as long as Uμk

has orthonormal
columns. Also, note that Uμk

= Uμ, for k = 1, . . . , K .
Similarly, the first column of Vμk

can be chosen as
aTk

|aTk
| and

the rest of the columns can be chosen arbitrarily as long as
Vμk

has orthonormal columns. Unlike Uμk
, Vμk

is different
for different users. The diagonal matrix Λμk

has only one
non-zero element, which is |aR||aTk

|.
The following theorem identifies the optimum transmit

directions for all users. The single-user version of this theorem
was proved in [21], [22].

Theorem 4: Let Hμk
= UμΛμk

V†
μk

be the singular value
decomposition of the channel mean matrix of user k. Then,
the optimum transmit covariance matrix Qk of user k may be
expressed as Qk = Vμk

ΛkV†
μk

, for all users.
The proof of this theorem can be found in [25]. It follows
[21] closely, and is omitted here.

The optimization problem in (5) with channel mean matri-
ces {Hμk

}K
k=1 can be written as

Csum({Hμk
}K

k=1) = max
tr(Qk)≤Pk,Qk�0

k=1,...,K

E

[
log
∣∣∣InR +

K∑
k=1

(Hμk
+ Zk)

log log
∣∣∣InR +

K∑
k=1

Qk(Hμk
+ Zk)†

∣∣∣
]

(29)

Using Theorem 4, we can write the optimization problem in
(29) as

Csum = max
tr(Λk)≤Pk,Λk�0

k=1,...,K

E

[
log
∣∣∣InR +

K∑
k=1

ẐkΛkẐ
†
k

∣∣∣
]

(30)

= max∑nT
i=1 λ

Q
ki

≤Pk,λ
Q
ki

≥0

k=1,...,K

E

[
log
∣∣∣InR +

K∑
k=1

nT∑
i=1

λQ
kiẑkiẑ

†
ki

∣∣∣
]

(31)

where Ẑk = Λμk
+ Zk. Note that while the first column of

this matrix is a non-zero mean Gaussian vector, all of the
remaining columns are zero-mean Gaussian vectors.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on October 02,2022 at 02:23:51 UTC from IEEE Xplore.  Restrictions apply. 



SOYSAL and ULUKUS: OPTIMALITY OF BEAMFORMING IN FADING MIMO MULTIPLE ACCESS CHANNELS 1177

Similar to the covariance feedback case, in a MIMO system,
a transmit strategy is a combination of a transmit direction
strategy and a transmit power allocation strategy. A result of
Theorem 4 is that the optimal multi-user transmit direction
strategies are decoupled into single-user transmit direction
strategies. However, in general, this is not true for the optimal
transmit power allocation strategies. On the other hand, we
know that when beamforming is optimal, the optimal transmit
power allocation strategy for each user is to allocate all of its
power to its strongest eigen-direction. Therefore, for the range
of parameters where beamforming is optimal, both the optimal
transmit direction and the optimal transmit power allocation
strategies are decoupled among users.

2) Conditions for the Optimality of Beamforming: In this
section, we determine the conditions for the optimality of
beamforming in a multi-user system with a finite number of
users, when the partial CSI available at the transmitters is
in the form of mean feedback. Reference [6] identified these
conditions for a single-user system. For a single-user system,
let λμ denote the non-zero eigenvalue of the channel mean
matrix Hμ. Then, the necessary and sufficient condition for
the optimality of beamforming is [6]:

P <
1 − E

[
1

1+P ẑ† ẑ

]
nR − 1 + E

[
1

1+P ẑ†ẑ

] (32)

where ẑ is an nR × 1 dimensional Gaussian random vector
with identity-covariance. The first entry of ẑ has a mean of
λμ, while all other entries have zero-mean.

Similar to the covariance feedback case, we find the con-
ditions for the optimality of beamforming for all users in
a multi-user setting. Inserting K = 1 in our results would
reduce them to (32). In our results, the number of conditions
equals the number of users. The condition corresponding to
user k depends on the non-zero eigenvalues of the channel
mean matrices of all users. We have the following theorem.

Theorem 5: In a MIMO-MAC system where the transmit-
ters have partial CSI in the form of mean feedback, the
transmit covariance matrices of all users that maximize (31)
have unit-rank (i.e., beamforming is optimal for all users) if
and only if

Pk <
1 − E

[
1

1+Pkẑ†
k1B

−1
k ẑk1

]
nR − K +

∑K
l=1 E

[
1

1+Plẑ
†
l1B

−1
l ẑl1

] , k = 1, . . . , K

(33)
where B = InR +

∑K
l=1 Plẑl1ẑ

†
l1, Bk = B − Pkẑk1ẑ

†
k1, and

ẑk1 = λμ
ke1 + zk1 is the first column of the matrix Ẑk.

Proof (Theorem 5): The Lagrangian for the optimization
problem in (31), with νk as the Lagrange multiplier of user k
corresponding to its power constraint, is

E

[
log
∣∣∣InR+

K∑
k=1

nT∑
i=1

λQ
kiẑkiẑ

†
ki

∣∣∣
]
−

K∑
k=1

νk

(
nT∑
i=1

λQ
ki−Pk

)

(34)

This Lagrangian for the mean feedback case is similar to
the Lagrangian for the covariance feedback case in (15) with
the difference that there are no second largest eigenvalues of

the channel mean matrices. The following KKT conditions for
user k can be derived using (16),

E

⎡
⎣ẑ†ki

(
I +

K∑
k=1

nT∑
i=1

λQ
kiẑkiẑ

†
ki

)−1

ẑki

⎤
⎦ ≤ νk (35)

for i = 1, . . . , nT . Similar to the covariance feedback case,
in order for beamforming to be optimal, we should have
λQ

k1 = Pk , and all other eigenvalues of the transmit covariance
matrices to be zero. We have the following for user k,

Ek1 = E
[
ẑ†k1B

−1ẑk1

]
= νk (36)

Eki = E
[
ẑ†kiB

−1ẑki

]
< νk, ∀i �= 1 (37)

Equivalently, the conditions for the optimality of beamforming
for all users are

Ek1

Eki
> 1, ∀i �= 1, k = 1, . . . , K (38)

Finally, using Lemma 1, we have (33). �

Note that inserting K = 1 in (33), we obtain the condition in
(32), which is derived in [6]. In our case, the condition in (33)
depends only on the sole non-zero channel mean eigenvalues
of all users. Therefore, if the powers and the eigenvalues of
the feedback mean matrices of all users are such that they
satisfy the inequalities in (33), then beamforming is optimal
for all users.

Contrary to the covariance feedback case, in the mean
feedback case, the region where beamforming is optimal does
not necessarily grow with the addition of new users into the
system. The reason that the proof of Theorem 3 does not
follow in the mean feedback case is the following. Note that,
in the covariance feedback case, the off-diagonal entries of
the matrix in the numerator of (25) were zero. However,
in the mean feedback case, the off-diagonal entries of the
corresponding matrix are not zero. Therefore, proving that the
eigenvalues of that matrix increase, does not prove that the
diagonal entries of the same matrix increase as well. However,
for relatively large numbers of users, we see through simula-
tions that it is harder to violate the beamforming condition.
We discuss this issue in more detail in Section V.

We have proved for the covariance feedback case and
observed through simulations for the mean feedback case
with relatively large numbers of users that the region where
beamforming is optimal for all users grows, as new users
are added to the system. These results and the asymptotic
results of [15] with deterministic channel assumption motivate
us to investigate whether the growth of the region where
beamforming is optimal is bounded, or whether beamforming
is unconditionally optimal for very large numbers of users in a
fading environment. We address this issue in the next section.

IV. ASYMPTOTIC ANALYSIS

It is not immediate from the previous section that the
region where beamforming is optimal covers the entire channel
parameter space for all users when the number of users grows
to infinity. In this section, we show that for very large numbers
of users, even with the assumption that the transmitters have no
knowledge of the channel, beamforming achieves a sum rate
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which approaches the sum capacity. For asymptotic analysis,
we need the following lemma.

Lemma 2: Let xi, i = 1, 2, . . . be a sequence of i.i.d.
random vectors of length M, which have zero-mean and
identity-covariance matrix, and let αi, i = 1, 2, . . . be a
sequence of bounded real numbers. Then,

E

[
log
∣∣∣IM +

N∑
i=1

αixix
†
i

∣∣∣
]

.= M log

(
1 +

N∑
i=1

αi

)
(39)

where the symbol
.= denotes “equal for asymptotically large

N”.
This is a version of the Strong Law of Large Numbers (SLLN),
which states that the sum of independent, non-identically
distributed random variables, converges to the sum of the
means of the random variables. In particular, this version of
SLLN is applied to independent random vectors

√
αixi in

(39) which are non-identically distributed. A formal proof of
Lemma 2 is given in Appendix A.

Lemma 2 will be used to state a form of channel “hard-
ening” in the next three sub-sections. We will use Lemma 2
to say that, when the number of users grows to infinity, a
form of channel hardening will occur, i.e., roughly speaking∑K

k=1

∑nT

i=1 hkih
†
ki in (6),

∑K
k=1

∑nT

i=1 λQ
kiλ

Σ
kizkiz

†
ki in (10),

and
∑K

k=1

∑nT

i=1 λQ
kiẑkiẑ

†
ki in (31) will converge to deter-

ministic quantities almost surely, and that those deterministic
quantities can be approached if simple beamforming is used.
When beamforming is used, the sum

∑nT

i=1 drops in all three
sums, however the sum over k, i.e.,

∑K
k=1 suffices to create

the effect of SLLN.
The concept of channel hardening has been observed in

[16] also, where instead of a SLLN approach, a Central
Limit Theorem (CLT) approach is used to conclude that the
mutual information converges to a Gaussian random variable
whose variance vanishes. In [16], the number(s) of transmit
and receive antennas grow(s) large for a single-user system,
while here, the number of transmit and receive antennas are
fixed, but the number of users goes to infinity in a MAC.
Nevertheless, we observe similar mathematical phenomena as
in [16].

A. No CSI at the Transmitters

When there is no CSI at the transmitters, the optimal
transmit strategy is to use an identity transmit covariance
matrix for all users [3]. In this section, we show that when
there is no CSI at the transmitters, for an asymptotically large
system, an arbitrary antenna selection scheme is sufficient
to achieve the sum capacity. This is stated in the following
theorem.

Theorem 6: In a system where there is no CSI at the
transmitters, if the number of users grows to infinity, then the
sum rate achieved by unit-rank transmit covariance matrices
approaches the sum capacity. In particular, this unit-rank
transmission scheme takes the form of a simple antenna
selection.

Proof (Theorem 6): The sum capacity in this case is given
in (5) with Qk = Pk

nT
I, for all k. We define Caas

sum as the

achievable sum rate by performing arbitrary antenna selection
(aas) at all transmitters:

Caas
sum = E

[
log
∣∣∣InR +

K∑
k=1

Pkhkak
h†

kak

∣∣∣
]

(40)

where hkak
is the ath

k column of the channel matrix of user
k, and ak is the antenna chosen by user k, 1 ≤ ak ≤ nT . The
choice of the columns does not affect our result. All users
may select their first antenna, i.e., ak = 1, for all k, or they
may select an antenna arbitrarily. Since Strong Law of Large
Numbers (SLLN) averages out the randomness in the channel
regardless of the realizations, so long as the columns of the
channel matrices are independent, the transmit antenna each
user selects is immaterial.

By noting that Pk are a series of bounded numbers, we
apply Lemma 2 to (5) by inserting Qk = Pk

nT
I, for all k, and

to (40). We have

Csum
.= Caas

sum
.= nR log

(
1 +

K∑
k=1

Pk

)
(41)

Therefore, we see that the sum rates achievable by the optimal
power allocation and the arbitrary antenna selection scheme
converge to the same quantity asymptotically. �

We note that this result does not contradict with the result
of [3] which is stated in Section III. For a multi-user system,
full-rank transmit covariance matrices are optimum in the
sense of maximizing the sum rate [3]. Theorem 6 states that
arbitrary antenna selection scheme is also sufficient to achieve
the optimum when the number of users grows to infinity. In
other words, the performance of the arbitrary antenna selection
scheme converges to the optimum when the number of users
goes to infinity.

B. Covariance Feedback at the Transmitters

When the transmitters have the partial CSI in the form of
covariance feedback, Theorem 1 shows that for any number
of users, the transmit directions of a user are the eigenvectors
of its own channel covariance feedback matrix. For suffi-
ciently large numbers of users, the asymptotic optimality of
beamforming in achieving the sum capacity is proved in the
following theorem.

Theorem 7: In a system where there is partial CSI at the
transmitters in the form of covariance feedback, if the number
of users grows to infinity, then the sum rate achieved by
unit-rank transmit covariance matrices (i.e., beamforming)
approaches the sum capacity. In particular, this beamforming,
for each user, is in the direction of the strongest eigenvector
of the channel covariance matrix of that user.

Proof (Theorem 7): Note that λQ
ki is bounded for all (k, i),

since power constraints for all users are finite, and λΣ
ki is

bounded for all (k, i), since the covariance matrix, Σk, of
the channel has finite trace. Now, we can apply Lemma 2 to
(10) with αki = λQ

kiλ
Σ
ki. We have

Csum
.= max∑nT

i=1 λ
Q
ki

≤Pk

k=1...K

nR log

(
1 +

K∑
k=1

nT∑
i=1

λQ
kiλ

Σ
ki

)
(42)
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In order to solve the above optimization problem, we form the
Lagrangian with μk’s as the Lagrange multipliers,

nR log

(
1 +

K∑
k=1

nT∑
i=1

λQ
kiλ

Σ
ki

)
−

K∑
k=1

μk

(
nT∑
i=1

λQ
ki − Pk

)

(43)

The KKT optimality conditions for i = 1, . . . , nT , and k =
1, . . . , K are,

nRλΣ
ki

1 +
∑K

k=1

∑nT

i=1 λQ
kiλ

Σ
ki

≤ μk (44)

where (44) is satisfied with equality if λQ
ki > 0. Note that the

denominators on the left hand side of all the KKT conditions
are the same. Without loss of generality, let λΣ

knT
< · · · < λΣ

k1

for user k. Assume that λQ
kj > 0 and λQ

ki > 0. Then, we
must have λΣ

kj = λΣ
ki, which is a contradiction. Therefore,

for user k, only one λQ
kj , j = 1, · · · , nT can be non-zero.

From the objective function in (42), we observe that the non-
zero λQ

kj must correspond to the largest eigenvalue of the
channel covariance feedback matrix. Hence, the only non-zero
power component in ΛQk

is the first diagonal element. Finally,
from the trace constraint, we have λQ

k1 = Pk, for all k. The
asymptotic sum capacity becomes

Csum
.= nR log

(
1 +

K∑
k=1

PkλΣ
k1

)
(45)

�

C. Mean Feedback at the Transmitters

When the transmitters have the partial CSI in the form of
mean feedback, Theorem 4 shows that for any number of
users, the transmit directions of a user are the eigenvectors of
its own channel mean feedback matrix. For sufficiently large
numbers of users, the asymptotic optimality of beamforming in
achieving the sum capacity is proved in the following theorem.

Theorem 8: In a system where there is partial CSI at the
transmitters in the form of mean feedback, if the number of
users grows to infinity, then the sum rate achieved by unit-rank
transmit covariance matrices (i.e., beamforming) approaches
the sum capacity. In particular, this beamforming, for each
user, is in the direction of the eigenvector corresponding to
the sole non-zero eigenvalue of the channel mean matrix of
that user.

Proof (Theorem 8): First, note that λμ
ki for all (k, i) is

bounded, since the channel has finite mean information. Ap-
plying Lemma 2 to (31), while noting that λμ

ki is non-zero for
only i = 1, and therefore using different αki (all of which are
bounded) for diagonal and off-diagonal entries, we get

Csum
.= max∑nT

i=1 λ
Q
ki

≤Pk

k=1...K

(nR − 1) log

(
1 +

K∑
k=1

Pk

)

+ log

(
1 +

K∑
k=1

(
(λμ

k1)
2λQ

k1 + Pk

))

(46)

Since only one eigenvalue from the transmit covariance matrix
of each user appears in (46), the optimum choice is to allocate
all of the power of each user to the eigenvector of its own
channel mean matrix corresponding to the only non-zero
eigenvalue, i.e., λQ

k1 = Pk, for all k. The resulting sum
capacity,

Csum
.= (nR − 1) log

(
1 +

K∑
k=1

Pk

)

+ log

(
1 +

K∑
k=1

(
(λμ

k1)
2Pk + Pk

))
(47)

�

V. NUMERICAL RESULTS

The region where beamforming is optimal is multi-
dimensional. In order to illustrate the effects of having more
than two users, we plot two dimensional slices from the
region where beamforming is optimal for all users. We first
consider the covariance feedback case, and plot these slices
for K = 1, 2, 3, 5, 10 users in Figure 1. These slices give
the maximum possible λΣ

12 for a range of λΣ
11. The largest

eigenvalues of the remaining users are kept constant. The
number of transmit and receive antennas is nT = nR = 2.
We see that the region where beamforming is optimal gets
larger with increasing number of users. Note that these curves
have to lie below the λΣ

12 = λΣ
11 line, because λΣ

11 is the largest
eigenvalue. The top-most line in Figure 1 is the λΣ

12 = λΣ
11

line. We observe that the curves get closer to the λΣ
12 = λΣ

11

line as K increases. This figure shows that with the addition
of more and more users into the system, a larger range of
(λΣ

11, λ
Σ
12) pairs becomes optimal.

For the mean feedback model, we will demonstrate two
different cases. In the first case, the region where beamforming
is optimal gets larger by addition of new users into the system.
In Figure 2, we plot one dimensional slices from the region
corresponding to K = 1, 2, 3, 5, 10. These lines give λμ

1 values
for beamforming to be optimal for a given power constraint,
Pk = 1 for all k.

The largest eigenvalues of all other users, which are kept
constant, are comparable in value to each other. The number
of transmit and receive antennas is nT = nR = 2. The curves
in Figure 2 correspond to the left hand side of (38) for k = 1.
Beamforming is optimal for the range of λμ

1 , where the curves
stay above the horizontal line at Pk = 1. For example, in the
single user case, beamforming is optimal for λμ

1 values to the
left of point A and to the right of point B, while beamforming
is not optimal for all λμ

1 values between points A and B. In
the second case, the region where beamforming is optimal
first gets smaller by the addition of new users into the system,
however it then starts to get larger as the number of users
is increased further. In Figure 3, we plot one dimensional
slices from the region corresponding to K = 1, 2, 5, 10, 20, 30.
These curves give λμ

1 values for beamforming to be optimal
for a given power constraint, Pk = 1 for all k. The largest
eigenvalues of all other users are kept constant, and each new
user that is added to the system has a larger mean channel
value than those of the users that are already in the system.
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Fig. 1. The region where beamforming is optimal for various numbers of
users in the covariance feedback model.
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Fig. 2. The region where beamforming is optimal for various numbers of
users in the mean feedback model. This is an example where the region gets
larger as more users are added into the system.

The number of transmit and receive antennas is nT = nR = 2.
In Figure 4, we zoom into the center of Figure 3 in order to
show the details.

In light of these two examples, we conclude that, for
the mean feedback model, the region where beamforming is
optimal does not necessarily get larger with increasing number
of users. However, we observe that as the number of users
grows, the region starts to get larger regardless of the mean
channel values of the users. The situation in Figures 3 and
4 is a worst case scenario. Even in this worst case, only the
region corresponding to the first user does not get larger, while
the corresponding regions for all other users in the system get
larger. This possibly follows from the fact that the first user
has the lowest mean channel value.

In Figure 5, we illustrate the change in the region where
beamforming is optimal with the number of receive antennas
for the covariance feedback model, while the number of trans-
mit antennas is kept at nT = 2. We observe that the region
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Fig. 3. The region where beamforming is optimal for various numbers of
users in the mean feedback model. This is an example where the region does
not get larger as more users are added into the system.
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Fig. 4. This is the same as Figure 3 where we zoom into the center of the
figure to show details.

gets smaller as the number of receive antennas is increased.
However, for a fixed number of receive antennas, the region
grows with the number of users, and eventually equals the
entire parameter region asymptotically as the number of users
goes to infinity.

For the asymptotic analysis, in Figure 6, we show three
simple examples for different numbers of receive and transmit
antennas. We plot the sum rates resulting from optimal power
allocation and arbitrary antenna selection schemes for the no
CSI model. We observe that, for this instance, even for a small
number of users, arbitrary antenna selection performs very
close to the optimum power allocation scheme.

VI. CONCLUSION

We determined the optimal transmit directions and the
region where beamforming is optimal for all users under
covariance and mean feedback CSI models for a multi-user
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Fig. 5. The region where beamforming is optimal for various numbers of
receive antennas in the covariance feedback model.

MIMO-MAC. We proved that the region where beamforming
is optimal gets larger by the addition of new users into the
system in the covariance feedback case. In the mean feed-
back case, we observed through simulations that the region
where beamforming is optimal gets larger for relatively large
numbers of users. We showed that in an asymptotically large
system, beamforming is always optimal for all users not only
for the covariance and the mean feedback cases, but also for
the no CSI case as well. Combining our results with those
of [15], we conclude that in a large multi-user MIMO-MAC
system, beamforming is optimal under full, partial (covariance
and mean), and no CSI cases.

VII. APPENDIX

A. Proofs of the Lemmas

Proof (Lemma 1): Using the matrix inversion lemma [26,
page 19]

A−1=A−1
k −A−1

k zk1

(
1

PkλΣ
k1

+ z†k1A
−1
k zk1

)−1

z†k1A
−1
k

(A-1)

Multiplying this with z†k1 from left, and zk1 from right yields

z†k1A
−1zk1 =

1
PkλΣ

k1

(
1 − 1

1 + PkλΣ
k1z

†
k1A

−1
k zk1

)
(A-2)

By taking the expectation of both sides, (12) follows. In order
to derive the identity in (13), note that

λΣ
kiE

[
z†kiA

−1zki

]
= λΣ

kiE
[
tr(A−1)

]
(A-3)

since zk2 is independent of A, and has identity-covariance.
Applying the matrix inversion lemma [26, page 19] to A =
InR + Z̄Λ̃Z̄†, with Λ̃ = P̄Λ̄

A−1 = InR − Z̄Λ̃1/2(IK + Λ̃1/2Z̄†Z̄Λ̃1/2)−1Λ̃1/2Z̄†

(A-4)

Calculating the traces of both sides, we obtain
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Fig. 6. Sum rates for the optimal and arbitrary antenna selection schemes,
as a function of the number of users in the no CSI model.

tr(A−1) = nR − tr
(
(IK + Λ̃1/2Z̄†Z̄Λ̃1/2)−1

(IK + Λ̃1/2Z̄†Z̄Λ̃1/2 − IK)
)
(A-5)

= nR − K + tr
(
(IK + Λ̃1/2Z̄†Z̄Λ̃1/2)−1

)
(A-6)

= nR − K +
∑K

k=1 |Ak|
|A| (A-7)

where in the last equation, we used the definition of an inverse
of a matrix [26, page 21] and |I + AB| = |I + BA|. Noting
that |Ak|

|A| = 1

1+PkλΣ
k1z

†
k1A

−1
k zk1

, and taking the expectations of

both sides, we have (13). �

Proof (Lemma 2): We will apply a version of the SLLN
from [27, page 27, Theorem D]. In this version of the SLLN,
the sum of a sequence of independent random variables with
different means and variances converges to the sum of the
sequence of means of the random variables, subject to the
condition that

∑N
i

σ2
i

i2 converges, where σ2
i are the variances

of the random variables. We will apply this theorem to every
element of the matrix at hand, that is, to

∑N
i=1 αixikx∗

ij , for
all (k, j). In order to invoke the theorem, we let αixikx∗

ij ,
for all i, be the sequence of independent but not identically
distributed random variables. Note that the expectations of
the diagonal elements are αi, and the expectations of the
off-diagonal elements are zero. Since αi are assumed to be
bounded and xi have zero-mean and identity covariance,∑N

i

α2
i E[x2

ikx2
ij ]

i2 converges, for all (k, j). As a result, we have∑N
i=1 αixix

†
i →∑N

i=1 αiIM .
Due to [27, page 24], if a random variable converges to a

deterministic number, a, then a function, f , of that random
variable converges to f(a). Therefore,

log
∣∣∣IM +

N∑
i=1

αixix
†
i

∣∣∣→ M log

(
1 +

N∑
i=1

αi

)
, a.s. (A-8)

If a random variable converges to a number almost surely,
then the expectation of that random variable will be equal to

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on October 02,2022 at 02:23:51 UTC from IEEE Xplore.  Restrictions apply. 



1182 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 57, NO. 4, APRIL 2009

the same number (for large N ). That is,

E

[
log
∣∣∣IM +

N∑
i=1

αixix
†
i

∣∣∣
]

.= M log

(
1 +

N∑
i=1

αi

)
. (A-9)

�

B. General Receive Antenna Correlation Matrix

In the model that we considered in the main part of this
paper, the receiver side correlation matrix is the identity
matrix as a result of the assumption that the receiver (e.g.,
a base station) is not physically limited and one can place the
antenna elements sufficiently far away from each other. In a
different physical model with receiver side correlation present
in the system, similar results can be found. For the single-user
scenario, it is already known that the transmit directions are
still the eigenvectors of the transmitter side channel correlation
matrix, even when there is receiver side channel correlation
in the system [8]. Beamforming optimality condition for this
case is also found previously [8]. For the multi-user scenario,
our approach generalizes to the case where there is receiver
side channel correlation in the system, when the receiver side
channel correlation matrices of all users are the same. In this
case, the channel is modeled as,

Hk = Φ1/2ZkΣ
1/2
k (B-1)

where the receive antenna correlation matrix, Φ, is the corre-
lation between the signals received at the nR receive antennas
of the receiver. This correlation matrix does not depend on the
specific transmit antenna from which the signal is transmitted
[19]. In a MAC, since we have a single receiver and the
correlation matrix does not depend on the transmitters, we
have the same Φ for all users. The transmit antenna correlation
matrix, Σk, is the correlation between the signals transmitted
from the nT transmit antennas of user k.

The result of Theorem 1, which states that the optimal
transmit directions are the eigenvectors of the transmit antenna
correlation matrix, remains exactly the same. The result of
Theorem 2, which states the conditions under which beam-
forming is optimal for all users, changes slightly. The refined
conditions involve the eigenvalues of the receive correlation
matrix. The region formed by these refined conditions still
grows with the addition of a new user, and therefore, Theorem
3 also remains exactly the same. Finally, the asymptotic
sum capacity expression in Theorem 7 changes slightly and
involves the eigenvalues of the receive correlation matrix.
Below, we outline the reasons that Theorems 1 and 3 remain
the same, and state the refined conditions for the optimality
of beamforming and the new asymptotic sum capacity expres-
sion.

Proof (Theorem 1): Let Φ = UΦΛ1/2
Φ U†

Φ be the spectral
decomposition of the receive antenna correlation matrix. In-
serting this into (B-1), we have

Hk = UΦΛ1/2
Φ U†

ΦZkUΣk
Λ1/2

Σk
U†

Σk
(B-2)

Then, inserting (B-2) into (5) and following similar lines to

[8], we obtain

Csum = max
tr(Qk)≤Pk,Qk�0

k=1,...,K

E

[
log
∣∣∣InR + ΛΦ

K∑
k=1

ZkΛQk
ΛΣk

Z†
k

∣∣∣
]

(B-3)

The only difference between the proofs of Theorem 1 in
uncorrelated and correlated receiver structures is that, here,
we have the matrix ΛΦ in front of the summation term inside
the logarithm compared to (9), which does not affect the
derivations. Therefore, we observe that, even when the receive
antenna correlation matrix is not equal to identity, the transmit
directions of all users continue to depend only on their own
transmit antenna correlation matrices. However, the resulting
sum capacity is different, and the optimal power allocation will
depend on the eigenvalues of the receive antenna correlation
matrix. �

The sum capacity expression in this case can be written,
similar to (10), as

Csum = max∑nT
i=1 λ

Q
ki

≤Pk,λ
Q
ki

≥0

k=1,...,K

E

[
log
∣∣∣InR +

K∑
k=1

nT∑
i=1

λQ
kiλ

Σ
kiz̃kiz̃

†
ki

∣∣∣
]

(B-4)

where {z̃ki = Λ1/2
Φ zki, k = 1, . . . , K, i = 1, . . . , nT } is

a set of i.i.d. Gaussian random vectors with zero-mean and
covariance matrix ΛΦ.

Proof (Theorem 2): After taking the derivative of the La-
grangian for the optimization problem in (B-4), the conditions
for the optimality of beamforming for k = 1, . . . , K become

Ẽk1

Ẽki

=
λΣ

k1E
[
z̃†k1Ã

−1z̃k1

]
λΣ

kiE
[
z̃†kiÃ−1z̃ki

] > 1, ∀i �= 1 (B-5)

where Ã = InR +
∑K

l=1 Plλ
Σ
l1z̃l1z̃

†
l1. The identities in Lemma

1 change slightly for the general Φ case. The details of the
derivations only require matrix algebra and are omitted here
due to space limitations. Inserting the new identities from
Lemma 1 into (B-5), we have k = 1, . . . , K

PλΣ
k2 <

1 − E
[

1
1+PkλΣ

k1z̃
T
k1Ã

−1
k z̃k1

]
∑nR

i=1 λΦ
i −∑K

l=1 E

[
PlλΣ

l1z̃
†
l1Λ

1/2
Φ Ã−1

l Λ
1/2
Φ z̃l1

1+PlλΣ
l1z̃

T
l1Ã

−1
l z̃l1

]
(B-6)

where Ãk = Ã − PkλΣ
k1z̃k1z̃

†
k1, for all k. �

Inserting Φ = I, and adding and subtracting “1” from the
numerator of the expectation term in the denominator of (B-
6), we get (14). And, inserting K = 1, and Ãk = I, for all k,
in (B-6), we get the single-user condition derived in [8].

Proof (Theorem 3): The proof exactly follows the original
proof. We only use the fact that {z̃ki} are independent and
zero-mean random vectors. �

Proof (Theorem 7): Applying Lemma 2 to (B-4), the objec-
tive function in (42) changes to a summation of log functions,
instead of nR log (·). Using the Lagrangian method, (45)
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becomes

Csum
.=

nR∑
i=1

log

(
1 + λΦ

i

K∑
k=1

PkλΣ
k1

)
(B-7)

�
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