
624 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 9, NO. 2, FEBRUARY 2010

Joint Channel Estimation and Resource Allocation
for MIMO Systems–Part I: Single-User Analysis

Alkan Soysal, Member, IEEE, and Sennur Ulukus, Member, IEEE

Abstract—Multiple antenna systems are known to provide very
large data rates, when the perfect channel state information
(CSI) is available at the receiver. However, this requires the
receiver to perform a noise-free, multi-dimensional channel esti-
mation, without using communication resources. In practice, any
channel estimation is noisy and uses system resources. We shall
examine the trade-off between improving channel estimation
and increasing the achievable data rate. We consider transmit-
side correlated multi-input multi-output (MIMO) channels with
block fading, where each block is divided into training and data
transmission phases. The receiver has a noisy CSI that it obtains
through a channel estimation process, while the transmitter has
partial CSI in the form of covariance feedback. In Part I of this
two-part paper, we consider the single-user case, and optimize
the achievable rate jointly over parameters associated with
the training phase and data transmission phase. In particular,
we first choose the training signal to minimize the channel
estimation error, and then, develop an iterative algorithm to
solve for the optimum system resources such as time, power and
spatial dimensions. Specifically, the algorithm finds the optimum
training duration, the optimum allocation of power between
training and data transmission phases, the optimum allocation
of power over the antennas during the data transmission phase.

Index Terms—MIMO, partial CSI, covariance feedback, opti-
mum power allocation, channel estimation.

I. INTRODUCTION

IN wireless communication scenarios, the achievable rate
of a system depends crucially on the amount of CSI

available at the receivers and the transmitters. The CSI is
observed only by the receiver, which can estimate it and
feed the estimated CSI back to the transmitter. However,
measuring the CSI and feeding it back to the transmitter
uses communication resources such as time, power and spa-
tial dimensions, which could otherwise be used for useful
information transmission. There have been several different
assumptions in the literature on the availability of the CSI
at the receiver and the transmitter. With perfect CSI at the
receiver and the transmitter, the optimum adaptation scheme
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is water-filling [2], [3]. However, in some cases, especially
in MIMO links, feeding the instantaneous CSI back to the
transmitter is not realistic. Therefore, some research assumes
that there is perfect CSI at the receiver, but only partial CSI
available at the transmitter [4]–[8]. Another line of research
considers the actual estimation of the channel at the receiver,
which is noisy. The capacity and the corresponding optimum
signalling scheme for this case are not known. However,
lower and upper bounds for the capacity can be obtained [9]–
[11]. It is important to note that [9]–[11] do not consider
optimizing the channel estimation process, because of the
assumption of the existence of a separate channel that does
not consume system resources for channel estimation. For a
single-user multiple-antenna system with no CSI available at
the transmitter, [12] considers optimizing the achievable rate
as a function of both the training and the data transmission
phases. Since there is no CSI feedback, the transmitter power
allocation is constant over the channel states and the antennas.

Part I of this two-part paper considers a single-user, block-
fading, transmit-side correlated MIMO channel with noisy
channel estimation at the receiver, and partial CSI available
at the transmitter. The CSI feedback that we consider lies
somewhere between perfect CSI [11] and no CSI [12], and it is
similar to [4]–[8]. We consider the fact that the training phase
uses communication resources, and we optimize the achievable
rate of the data transmission phase over the parameters of the
training and data transmission processes.

The training phase is characterized by three parameters,
namely, the training signal, the training sequence length and
the training sequence power. Similarly, the data transmission
phase is characterized by the data carrying input signal, data
transmission length, and the data transmission power. Assum-
ing that the receiver uses linear minimum mean square error
(MMSE) detection to estimate the channel during the training
phase, we first choose the training signal that minimizes
the MMSE. This choice also increases the achievable rate
of the data transmission phase [12]. However, unlike [12],
our result does not necessarily allocate equal power over the
antennas, and might not estimate all of the available channel
variables. Then, we move to the data transmission phase,
and maximize the achievable rate of the data transmission
jointly over the rest of the training phase parameters, and data
transmission phase parameters. Specifically, we first find the
optimum partition of the total transmitter power and the block
length between the training and the data transmission phases.
Then, we find the optimum allocation of the data transmission
power over the antennas during the data transmission phase.
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TABLE I
SYMBOLS USED IN THIS PAPER IN ORDER OF APPEARANCE

𝑛𝑅 number of receive antennas

𝑛𝑇 number of transmit antennas

H 𝑛𝑅 × 𝑛𝑇 transmit-side correlated channel matrix

𝑇 transmission block duration

𝑇𝑡 training phase duration

𝑇𝑑 data transmission phase duration

x𝑛 𝑛𝑇 × 1 channel input at time 𝑛

n𝑛 𝑛𝑅 × 1 channel noise

∼ 𝒞𝒩 (0, I) distributed as a zero-mean, identity covariance
complex Gaussian vector

𝑃 total average power constraint

Z 𝑛𝑅 × 𝑛𝑇 i.i.d. channel matrix

Σ 𝑛𝑇 × 𝑛𝑇 covariance matrix

𝑃𝑡 power allocated to training phase

𝑃𝑑 power allocated to data transmission phase

S 𝑛𝑇 × 𝑇𝑡 training signal

N𝑡 𝑛𝑅 × 𝑇𝑡 noise matrix in training phase

R𝑡 𝑛𝑅 × 𝑇𝑡 received matrix in training phase

Ĥ 𝑛𝑅 × 𝑛𝑇 estimate of the channel matrix

Σ̂ 𝑛𝑇 × 𝑛𝑇 covariance of the channel estimate

𝜆̂Σ
𝑖 eigenvalues of Σ̂

H̃ 𝑛𝑅 × 𝑛𝑇 channel estimation error

Σ̃ 𝑛𝑇 × 𝑛𝑇 covariance of the channel estimation error

𝜆̃Σ
𝑖 eigenvalues of Σ̃

M 𝑛𝑇 × 𝑇𝑡 MMSE estimator matrix

UΣ 𝑛𝑇 × 𝑛𝑇 unitary matrix of the eigenvectors of Σ

Λ𝑆 diagonal eigenvalue matrix of S

𝜆𝑖𝑆 eigenvalue of S

ΛΣ diagonal eigenvalue matrix of Σ

𝜆Σ
𝑖 eigenvalue of Σ

𝜇𝑆 Lagrange multiplier associated with
channel estimation minimization

Q 𝑛𝑇 × 𝑛𝑇 covariance matrix of the channel input

Ẑ 𝑛𝑅 × 𝑛𝑇 i.i.d. channel matrix

𝝀𝑄 𝑛𝑇 × 1 vector of eigenvalues of Q

Overall, we find the optimum allocation of resources such as
power, time and spatial dimensions. Part II [13] extends the
results of Part I to multiple-access channels. It also provides
extensive numerical analysis for both single-user and multi-
user scenarios. Symbols used in the paper are summarized in
Table 1.

II. SYSTEM MODEL

We consider a point-to-point channel with 𝑛𝑅 antennas at
the receiver and 𝑛𝑇 antennas at the transmitter. The channel
between the transmitter and the receiver is represented by
an 𝑛𝑅 × 𝑛𝑇 dimensional random matrix H. We consider a
block fading scenario where the channel remains constant for
a block (𝑇 symbols), and changes to an i.i.d. realization at
the end of the block. In order to estimate the channel, the
receiver performs a linear MMSE estimation using training
symbols over 𝑇𝑡 symbols. During the remaining 𝑇𝑑 = 𝑇 −𝑇𝑡

symbols, data transmission occurs. While the receiver has a
noisy estimate of the realization of the fading channel, the
transmitter has only the statistical model of the channel. At
time 𝑛, the transmitter sends a vector x𝑛, and the received

vector is
r𝑛 = Hx𝑛 + n𝑛, 𝑛 = 1, . . . , 𝑇 (1)

where n𝑛 ∼ 𝒞𝒩 (0, I), and the entries of H are complex
Gaussian random variables. The transmitter has a power
constraint 𝑃 = 1

𝑇 𝐸[
∑

𝑛 x
𝐻
𝑛 x𝑛], averaged over 𝑇 symbols1.

The statistical model that we consider in this paper is the
“partial CSI with covariance feedback” model where each
transmitter knows the channel covariance information of all
transmitters, in addition to the distribution of the channel.
In this model, there exists correlation between the signals
transmitted by or received at different antenna elements. For
each user, the channel is modeled as [14],

H = Φ1/2ZΣ1/2 (2)

where the entries of Z are i.i.d., zero-mean, unit-variance
complex Gaussian random variables, the receive antenna cor-
relation matrix, Φ, is the correlation between the signals
received at the 𝑛𝑅 receive antennas of the receiver, and
the transmit antenna correlation matrix, Σ, is the correlation
between the signals transmitted from the 𝑛𝑇 transmit antennas
of the user. In this paper, we will assume that the receiver
does not have any physical restrictions and therefore, there
is sufficient spacing between the antenna elements on the
receiver such that the signals received at different antenna
elements are uncorrelated. As a result, the receive antenna
correlation matrix becomes the identity matrix2, i.e., Φ = I.
Now, the channel is written as

H = ZΣ1/2 (3)

From this point on, we will refer to matrix Σ as the chan-
nel covariance feedback matrix. Similar covariance feedback
models have been used in [4]–[8].

III. JOINT OPTIMIZATION FOR SINGLE-USER MIMO

In our model the channel is fixed over a coherence interval,
which is divided into two phases: training phase and data
transmission phase; see Figure 1. The transmitter uses 𝑃𝑡

amount of power during the training phase and 𝑃𝑑 amount
of power during the data transmission phase. Due to the
conservation of energy, we have 𝑃𝑇 = 𝑃𝑡𝑇𝑡 + 𝑃𝑑𝑇𝑑.

The optimization criterion that we consider is the achievable
rate of the data transmission phase. Unlike the case with
perfect channel estimation, the data rate here depends on
the estimation parameters: training signal S, training signal
power 𝑃𝑡, and training signal duration 𝑇𝑡. As a result, there
is a trade-off between the training and data transmission
parameters. A longer training phase will result in a better
channel estimate (a lower channel estimation error). This in
turn, results in a higher achievable rate, since the effective
noise is lower. However, a longer training phase implies a
shorter data transmission phase, as the block length (coherence
time) is fixed. A shorter data transmission phase, in turn,

1Note that since the noise power is assumed to be unity, 𝑃 is in fact the
relative power with respect to noise power. It can be regarded as an SNR
value.

2Extension of our results to arbitrary Φ, i.e., the case where the channel
has double-sided correlation structure, can be carried out in a straight-forward
manner as in [8].
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Fig. 1. Illustration of a single coherence time, over which the channel is
fixed.

implies a smaller achievable rate. A similar trade-off is valid
also for the training power. Here, we will solve this trade-
off, and find the optimum training and data transmission
parameters.

A. Training and Channel Estimation Phase

In practical communication scenarios, the channel is esti-
mated at the receiver. One way of doing this is to use training
symbols before the data transmission starts. The receiver
estimates the channel using these training signals and the
output of the channel. Since the channel stays the same during
the entire block, we can write the input-output relationship
during the training phase in a matrix form as

R𝑡 = HS+N𝑡 (4)

where S is an 𝑛𝑇 × 𝑇𝑡 dimensional training signal that will
be chosen and known at both ends, R𝑡 and N𝑡 are 𝑛𝑅 × 𝑇𝑡

dimensional received signal and noise matrices, respectively.
The 𝑛𝑡ℎ column of the matrix equation in (4) represents the
input-output relationship at time 𝑛. The power constraint for
the training input signal is 1

𝑇𝑡
tr(SS†) ≤ 𝑃𝑡.

Due to our channel model in (3), the entries in a row
of H are correlated, and the entries in a column of H are
uncorrelated, i.e., row 𝑖 of the channel matrix is i.i.d. with row
𝑗. Let us represent row 𝑖 of H as h†

𝑖 , with 𝐸[h𝑖h
†
𝑖 ] = Σ, 𝑖 =

1, . . . 𝑛𝑅. Since rows are i.i.d., the receiver can estimate each
of them independently using the same training signal. Row 𝑖
of (4), which represents the received signal at the 𝑖𝑡ℎ antenna
of the receiver over the training duration, can be written as

r𝑡𝑖 = S†h𝑖 + n𝑡𝑖. (5)

The receiver will estimate h𝑖 using the received signal r𝑡𝑖, and
the training signal S. In general, the estimate ĥ𝑖 can be set
to any function of S and r𝑡𝑖. However, it is common to use
and easier to implement linear MMSE estimation. Also, when
the random variables involved in the estimation are Gaussian,
as in Rayleigh fading channels, linear MMSE estimation is
optimal. In order to find the linear MMSE estimator, we solve
the following optimization problem with ĥ𝑖 = Mr𝑡𝑖 as the
estimate of h𝑖, and h̃𝑖 = h𝑖 − ĥ𝑖 as the channel estimation
error,

min
M

𝐸
[
h̃†
𝑖 h̃𝑖

]
= min

M
𝐸
[
tr
(
h̃𝑖h̃

†
𝑖

)]
(6)

= min
M

𝐸
[
tr
(
(h𝑖 −Mr𝑡𝑖)(h𝑖 −Mr𝑡𝑖)

†)] .
(7)

Solving the optimum transformation matrix, M∗ from (7) is
equivalent to solving M∗ from the orthogonality principle for
vector random variables, which is given as [15, page 91],

𝐸
[
(h𝑖 −M∗r𝑡𝑖)r

†
𝑡𝑖

]
= 0 (8)

where 0 is the 𝑛𝑇 × 𝑇𝑡 zero matrix. We can solve M∗ from
(8) as

M∗ = 𝐸
[
h𝑖r

†
𝑡𝑖

] (
𝐸
[
r𝑡𝑖r

†
𝑡𝑖

])−1

. (9)

By using (5), we calculate 𝐸[h𝑖r
†
𝑡𝑖] = ΣS, and 𝐸[r𝑡𝑖r

†
𝑡𝑖] =

S†ΣS+ I. Then, M∗ becomes M∗ = ΣS(S†ΣS+ I)−1. By
inserting M∗ into (7), the mean square error becomes,

min
M

𝐸
[
h̃†
𝑖 h̃𝑖

]
= tr

(
Σ−ΣS(S†ΣS+ I)−1SΣ

)
(10)

= tr
((

Σ−1 + SS†)−1
)

(11)

where the last line follows from the matrix inversion lemma
[16, page 19]. Note that the mean square error of the channel
estimation process can be further decreased by choosing the
training signal S to minimize (11). In addition, it is stated in
[12] that the training signal S primarily affects the achievable
rate through the so called effective signal-to-noise ratio, which
is shown to be inversely proportional to the MMSE [12].
Therefore, choosing S to further minimize the MMSE, we also
increase the achievable rate of the data transmission phase.
The following theorem finds the optimal training signal for a
given training power and training duration.

Theorem 1: For given Σ = UΣΛΣU
†
Σ, 𝑃𝑡, 𝑇𝑡, and the

power constraint tr(SS†) ≤ 𝑃𝑡𝑇𝑡, the optimum training input
that minimizes the power of the channel estimation error
vector is S∗ = UΣΛ

1/2
𝑆 with

𝜆𝑆
𝑖 =

(
1

𝜇𝑆
− 1

𝜆Σ
𝑖

)+

, 𝑖 = 1, . . . ,min(𝑛𝑇 , 𝑇𝑡) (12)

where 𝜇2
𝑆 is the Lagrange multiplier that satisfies the power

constraint with 𝜇𝑆 = 𝐽
𝑃𝑡+

∑𝐽
𝑖=1

1

𝜆Σ
𝑖

, and 𝐽 is the largest index

that has non-zero 𝜆𝑆
𝑖 .

Proof: Let us have S = U𝑆Λ
1/2
𝑆 V†

𝑆 . The expression in (11)
is minimized when Σ−1 and SS† have the same eigenvectors
[17]. Therefore, we have U𝑆 = UΣ. Since, SS† = U𝑆Λ𝑆U

†
𝑆 ,

and the unitary matrix V𝑆 does not appear in the objective
function and the constraint, we can choose V𝑆 = I. Inserting
this into (11), the optimization can be written as

𝜎̃ = min
tr(Λ𝑆)≤𝑃𝑡𝑇𝑡

tr
((

Λ−1
Σ +Λ𝑆

)−1
)
. (13)

The Langrangian of the problem in (13) can be written as
𝑛𝑇∑
𝑖=1

1
1
𝜆Σ
𝑖

+ 𝜆𝑆
𝑖

+ 𝜇2
𝑆

(
𝑛𝑇∑
𝑖=1

𝜆𝑆
𝑖 − 𝑃𝑡𝑇𝑡

)
(14)

where 𝜇2
𝑆 is the Lagrange multiplier. The Lagrangian is a

convex function of 𝜆𝑆
𝑖 , therefore the solution that satisfies the

Karush-Kuhn-Tucker (KKT) conditions is the unique optimum
solution. This gives us (12), which is water-filling over the
eigenvalues of the channel covariance matrix. In order to
calculate 𝜇𝑆 , we sum both sides of (12) over all antennas
to get 𝜇𝑆 = 𝐽

𝑃𝑡+
∑

𝐽
𝑖=1

1

𝜆Σ
𝑖

, where 𝐽 is the largest index that

has non-zero 𝜆𝑆
𝑖 . □

It is important to note that for any given 𝑃𝑡, and 𝑇𝑡 >
𝑛𝑇 , the eigenvalues of S∗ do not contain the training length
parameter. Increasing 𝑇𝑡 beyond 𝑛𝑇 does not result in better
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channel estimates. On the other hand, larger 𝑇𝑡 will result in
smaller data transmission length, and decrease the achievable
rate of the data transmission phase. Therefore, it is sufficient
to consider only 𝑇𝑡 ≤ 𝑛𝑇 , which we will assume through the
rest of this paper.

Theorem 1 tells us that the optimum transmit directions of
the training signal are the eigenvectors of the channel covari-
ance matrix, and the right eigenvector matrix of the training
signal is identity. As a result, the columns of S∗ are the
weighted columns of a unitary matrix, and they are orthogonal.
Since each column of S∗ is transmitted at a channel use during
the training phase, vectors that are transmitted at each channel
use during the training phase are orthogonal to each other. This
means that, at each channel use, it is optimal to train only one
dimension of the channel along one eigenvector. Moreover,
the optimum power allocation policy for the training power
is to water-fill over the eigenvalues of the channel covariance
matrix using (12). Depending on the power constraint and
the training signal duration, some of the eigenvalues of the
training signal might turn out to be zero. This means that
some of the channels along the directions corresponding to
zero eigenvalues of the training signal, are not even trained.

Note that 𝜇𝑆 is a function of only 𝑃𝑡 and 𝑇𝑡, which
are given to the problem in Theorem 1, and will be picked
as a result of the achievable rate maximization problem in
the data transmission phase. The value of 𝑇𝑡 determines the
total number of available parallel channels in the channel
estimation problem, and the value of 𝑃𝑡 determines the number
of channels that will be estimated. The parametric values of 𝑃𝑡

and 𝑇𝑡 will appear in the achievable rate formula in the data
transmission phase. After the rate maximization is performed,
the optimum 𝑃𝑡 and 𝑇𝑡 will be found, and these in turn, will
give us S∗ through Theorem 1.

Before moving on to the next section, we will calculate
the eigenvalues of the covariance matrices of the estimated
channel vector, and the channel estimation error vector.
Plugging S∗ into the covariance of the channel estimation
error, Σ̃ = 𝐸

[
h̃𝑖h̃

†
𝑖

]
=
(
Σ−1 + SS†)−1

, we find Σ̃ =

UΣ

(
Λ−1

Σ +Λ𝑆

)−1
U†

Σ, where the eigenvalues can be found
using (12) as

𝜆̃Σ
𝑖 =

{
𝜇𝑆 , 𝜇𝑆 < 𝜆Σ

𝑖 ;
𝜆Σ
𝑖 , 𝜇𝑆 > 𝜆Σ

𝑖
= min

(
𝜆Σ
𝑖 , 𝜇𝑆

)
. (15)

Note that along the directions that we send training signals,
i.e., when the corresponding eigenvalues of the training signal
are non-zero (𝜇𝑆 < 𝜆Σ

𝑖 ), the variance of the channel esti-
mation error is the same for all directions. Conversely, for
the directions where no training signals are sent, the variance
of the channel estimation error is equal to the variance of
the channel along that direction. This is expected, since the
channel is not estimated along that direction, the error in the
channel estimation process is the same as the realization of
the channel itself.

Next, we will calculate the eigenvalues of the covariance of
the channel estimate. Using the orthogonality property of the
MMSE estimation, ĥ𝑖 and h̃𝑖 are uncorrelated [15, page 91].
The covariance matrix of the channel estimate Σ̂ = 𝐸

[
ĥ𝑖ĥ

†
𝑖

]

becomes

Σ̂ = UΣΛΣU
†
Σ −UΣΛ̃ΣU

†
Σ (16)

= UΣ

(
ΛΣ − Λ̃Σ

)
U†

Σ ≜ UΣΛ̂ΣU
†
Σ (17)

which has the same eigenvectors as the covariance matrix of
the actual channel, however, their eigenvalues are different.
We can write each eigenvalue of the covariance matrix of
the estimated channel as 𝜆̂Σ

𝑖 = max
(
0, 𝜆Σ

𝑖 − 𝜇𝑆

)
. Along the

directions that we do not send training signals, the value of
the channel estimate itself is zero. Therefore, as expected, the
power of the estimated channel is zero as well, along those
channels with 𝜇𝑆 > 𝜆Σ

𝑖 .

B. Data Transmission Phase

When the CSI at the receiver is noisy, the optimum input
signaling that achieves the capacity is not known. Following
[9]–[12], we derive a lower bound (i.e., an achievable rate)
on the capacity for our model, and find the training and data
transmission parameters that result in the largest such achiev-
able rate. Using the channel estimation error, H̃ = H − Ĥ,
we can write (1) as

r = Ĥx+ H̃x+ n. (18)

where x is the information carrying input, and n ∼ 𝒞𝒩 (0, I).
Let Q = 𝐸[xx†] be the transmit covariance matrix, which has
an average power constraint3 of 𝑃𝑑, tr(Q) ≤ 𝑃𝑑. Although
the optimum input distribution is not known, we achieve the
following rate with Gaussian x for a MIMO channel [11],

𝐶𝑙𝑏 = 𝐼(r;x∣Ĥ) ≥ 𝐸Ĥ

[
log
∣∣∣I+R−1

H̃x+n
ĤQĤ†

∣∣∣] (19)

where RH̃x+n = I + 𝐸H̃

[
H̃QH̃†

]
is the covariance matrix

of the effective noise, H̃x + n. By denoting each row of H̃

as h̃†
𝑖 , we can write the (𝑖, 𝑗)𝑡ℎ entry of 𝐸H̃

[
H̃QH̃†

]
as,

𝐸
[
h̃†
𝑖Qh̃𝑗

]
= tr

(
Q𝐸

[
h̃𝑖h̃

†
𝑗

])
=

{
tr(QΣ̃), when 𝑖 = 𝑗
0, when 𝑖 ∕= 𝑗

(20)

which results in 𝐸
[
H̃QH̃†

]
= tr(QΣ̃)I. Since our goal is

to find the largest such achievable rate, the rate maximization
problem over the entire block becomes

𝑅 = max
(Q,𝑃𝑡,𝑇𝑡)∈𝒮
tr(Q)≤𝑃𝑑

𝑇 − 𝑇𝑡

𝑇
𝐸Ĥ

[
log

∣∣∣∣∣I+ ĤQĤ†

1 + tr(QΣ̃)

∣∣∣∣∣
]

(21)

where 𝒮 =
{
(Q, 𝑃𝑡, 𝑇𝑡)

∣∣∣tr(Q)𝑇𝑑 + 𝑃𝑡𝑇𝑡 = 𝑃𝑇
}

, and the

coefficient 𝑇−𝑇𝑡

𝑇 reflects the amount of time spent during
the training phase. The maximization is over the training
parameters 𝑃𝑡, and 𝑇𝑡, and the data transmission parameter
Q, which can be decomposed into its eigenvectors (the trans-
mit directions), and eigenvalues (powers along the transmit
directions).

3Note that since the noise power is assumed to be unity, 𝑃𝑑 and the
eigenvalues of Q are relative power values with respect to the noise power.
They can be regarded as SNR values.
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1) Transmit Directions: Unlike the case with no-CSI at
the transmitters [12], in this paper, the optimum transmit
covariance matrix is not equal to the identity matrix. In this
case, the problem becomes that of choosing the eigenvectors
(the transmit directions), and the eigenvalues (the powers
allocated to the transmit directions), of the transmit covariance
matrix Q = U𝑄Λ𝑄U

†
𝑄, to maximize (21).

When the CSI at the receiver is perfect, [5] showed that
the eigenvectors of the transmit covariance and the channel
covariance matrices must be equal, i.e., U𝑄 = UΣ. In the
next theorem, we show that this is also true when there is
channel estimation error at the receiver.

Theorem 2: Let Σ = UΣΛΣU
†
Σ be the spectral decom-

position of the covariance feedback matrix of the channel.
Then, the optimum transmit covariance matrix Q∗ has the
form Q∗ = UΣΛ𝑄U

†
Σ.

Proof: We have shown in (15) and (17) that, when Σ =
UΣΛΣU

†
Σ, we have Σ̂ = UΣΛ̂ΣU

†
Σ, and Σ̃ = UΣΛ̃ΣU

†
Σ.

By using (3), we have Ĥ = ẐUΣΛ̂
1/2
Σ U†

Σ. Inserting these
into (21),

𝑅 = max
(Q,𝑃𝑡,𝑇𝑡)∈𝒮
tr(Q)≤𝑃𝑑

𝑇 − 𝑇𝑡

𝑇
𝐸Ẑ

⎡
⎣log

∣∣∣∣∣∣I+
ẐΛ̂

1/2
Σ U†

ΣQUΣΛ̂
1/2
Σ Ẑ†

1 + tr
(
U†

ΣQUΣΛ̃Σ

)
∣∣∣∣∣∣
⎤
⎦

(22)

where we used the fact that the random matrices ẐUΣ and Ẑ
have the same distribution for zero-mean identity-covariance
Gaussian Ẑ and unitary UΣ [3]. We may spectrally decom-
pose the expression sandwiched between Ẑ and its conjugate
transpose in (22) as

Λ̂
1/2
Σ U†

ΣQUΣΛ̂
1/2
Σ = UΛU†. (23)

Using (23), and the identity tr(AB) = tr(BA), we can
write the trace expression in the denominator of (22) as
tr
(
U†

ΣQUΣΛ̃Σ

)
= tr

(
U†Λ̂−1

Σ Λ̃ΣUΛ
)
, and the optimiza-

tion problem in (22) can be written as

𝑅 = max
(Q,𝑃𝑡,𝑇𝑡)∈𝒮
tr(Q)≤𝑃𝑑

𝑇 − 𝑇𝑡

𝑇
𝐸Ẑ

⎡
⎣log

∣∣∣∣∣∣I+
ẐΛẐ†

1 + tr
(
U†Λ̂−1

Σ Λ̃ΣUΛ
)
∣∣∣∣∣∣
⎤
⎦

(24)

where we again used the fact that the random matrices ẐU
and Ẑ have the same distribution. In (24), the numerator of
the objective function does not involve U, and using [18,
Theorem 9.H.1.h, page 249], we know that tr(Λ̂−1

Σ Λ̃ΣΛ) ≤
tr(U†Λ̂−1

Σ Λ̃ΣUΛ), for all unitary U. Therefore, we can
choose U∗ = I to maximize the rate as long as this choice
is feasible. In order to check for the feasibility, we write the
trace constraint on Q using (23) as

tr(Q) = tr(UΣΛ̂
−1/2
Σ UΛU†Λ̂−1/2

Σ U†
Σ) = tr(U†Λ̂−1

Σ UΛ).
(25)

Again from [18, Theorem 9.H.1.h, page 249], tr(Λ̂−1
Σ Λ) ≤

tr(U†Λ̂−1
Σ UΛ) ≤ 𝑃𝑑, for all unitary U. Therefore, we

conclude that U∗ = I choice is feasible. Then, using U∗ = I,
from (23), we have the desired result, Q∗ = UΣΛ̂

−1
Σ ΛUΣ

with Λ𝑄 = Λ̂−1
Σ Λ. □

Using Theorem 2, we can write the optimization problem
in (21) as,

𝑅 = max
(𝝀𝑄,𝑃𝑡,𝑇𝑡)∈𝒫

𝑇 − 𝑇𝑡

𝑇
𝐸ẑ𝑖

[
log

∣∣∣∣∣I+
∑𝑛𝑇

𝑖=1 𝜆
𝑄
𝑖 𝜆̂

Σ
𝑖 ẑ𝑖ẑ

†
𝑖

1 +
∑𝑛𝑇

𝑖=1 𝜆
𝑄
𝑖 𝜆̃

Σ
𝑖

∣∣∣∣∣
]
(26)

where ẑ𝑖 ∼ 𝒞𝒩 (0, I) is the 𝑖𝑡ℎ column of Ẑ, the set
of vectors {ẑ𝑖} are i.i.d, 𝝀𝑄 = [𝜆𝑄

1 , . . . , 𝜆
𝑄
𝑛𝑇

], and 𝒫 ={(
𝝀𝑄, 𝑃𝑡, 𝑇𝑡

) ∣∣∣ (∑𝑛𝑇

𝑖=1 𝜆
𝑄
𝑖

)
𝑇𝑑 + 𝑃𝑡𝑇𝑡 = 𝑃𝑇

}
.

2) Power Allocation Policy: In a MIMO system, a transmit
strategy is a combination of a transmit direction strategy, and a
transmit power allocation strategy, which is the set of optimum
eigenvalues of the transmit covariance matrix, 𝝀𝑄, that solves
(26). Although Theorem 2 gives us a very simple closed form
solution for the optimum transmit directions, solving (26) for
𝝀𝑄 in a closed form does not seem to be feasible due to the
expectation operation in the objective function. Therefore, we
will develop an iterative algorithm that finds the optimum 𝝀𝑄.

For a single-user MIMO system with perfect CSI at the
receiver and partial CSI at the transmitter in the form of
covariance feedback, an algorithm that finds the optimum
power allocation policy is proposed in [7]. In this section, we
extend the algorithm in [7] to the case when there is channel
estimation error at the receiver, or in other words, when we
have the training signal power and the training signal duration
in the sum-rate expression. The algorithm in [7] cannot be
trivially generalized to the model in this paper, since, here we
have the training power 𝑃𝑡, and the training duration 𝑇𝑡 as
additional parameters.

By plugging 𝜆̂Σ
𝑖 and 𝜆̃Σ

𝑖 into (26), we get

𝑅 = max
(𝝀𝑄,𝑃𝑡,𝑇𝑡)∈𝒫

𝑇 − 𝑇𝑡

𝑇
𝐸

[
log

∣∣∣∣∣I+
∑𝐽

𝑖=1 𝜆
𝑄
𝑖 (𝜆

Σ
𝑖 − 𝜇𝑆)ẑ𝑖ẑ

†
𝑖

1 +
∑𝐽

𝑖=1 𝜆
𝑄
𝑖 𝜇𝑆 + 𝛼

∣∣∣∣∣
]

(27)

where 𝛼 =
∑𝑛𝑇

𝑖=𝐽+1 𝜆
𝑄
𝑖 𝜆

Σ
𝑖 . Note that 𝐽 and 𝜇𝑆 are functions

of 𝑃𝑡 and 𝑇𝑡. Since 𝜆𝑄
𝑖 , for 𝑖 = 𝐽 + 1, . . . , 𝑛𝑇 does not

contribute to the numerator, we should choose 𝜆𝑄
𝑖 = 0, for

𝑖 = 𝐽 + 1, . . . , 𝑛𝑇 . This is to be expected, because we have
trained only 𝐽 transmit directions, and we should now solve
for 𝐽 power values along those directions. Consequently, we
have

𝑅 = max
(𝝀𝑄,𝑃𝑡,𝑇𝑡)∈𝒫

𝑇 − 𝑇𝑡

𝑇
𝐸

[
log

∣∣∣∣∣I+
∑𝐽

𝑖=1 𝜆
𝑄
𝑖 (𝜆

Σ
𝑖 − 𝜇𝑆)ẑ𝑖ẑ

†
𝑖

1 + 𝜇𝑆𝑃𝑑

∣∣∣∣∣
]
.

(28)

From Theorem 1, we know that 𝐽 ≤ 𝑇𝑡. We further claim
that while optimizing the rate, it is sufficient to search over
those (𝑃𝑡, 𝑇𝑡) pairs that result in 𝐽 = 𝑇𝑡. In other words, for
any pair (𝑃𝑡, 𝑇𝑡) that results in 𝐽 < 𝑇𝑡, we can find another
pair (𝑃𝑡, 𝑇

′
𝑡 ) that results in a higher achievable rate. In order

to see this, consider a pair (𝑃𝑡, 𝑇𝑡) that results in 𝐽 < 𝑇𝑡, then
let us choose 𝑇

′
𝑡 = 𝐽 . For this choice, the result of Theorem

1 is the same, since the available power can only fill 𝐽 of
the parallel channels. Therefore with (𝑃𝑡, 𝑇

′
𝑡 ) = (𝑃𝑡, 𝐽), the

estimation process yields the same channel estimate. When we
look at (28), we see that inside of the expectation is the same
for both (𝑃𝑡, 𝑇𝑡) and (𝑃𝑡, 𝑇

′
𝑡 ). However, the coefficient in front

of the expectation is higher with (𝑃𝑡, 𝑇
′
𝑡 ), since 𝐽 = 𝑇

′
𝑡 < 𝑇𝑡.
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Therefore (𝑃𝑡, 𝑇
′
𝑡 ) yields a higher achievable rate and it is

sufficient to search over those (𝑃𝑡, 𝑇𝑡) pairs that result in 𝐽 =
𝑇𝑡. We can now write (28) as

𝑅 = max
(𝝀𝑄,𝑃𝑡,𝑇𝑡)∈ℛ

𝑇 − 𝑇𝑡

𝑇
𝐸

[
log

∣∣∣∣∣I+
∑𝑇𝑡

𝑖=1 𝜆
𝑄
𝑖 (𝜆

Σ
𝑖 − 𝜇𝑆)ẑ𝑖ẑ

†
𝑖

1 + 𝜇𝑆𝑃𝑑

∣∣∣∣∣
]

(29)

where ℛ =
{(

𝝀𝑄, 𝑃𝑡, 𝑇𝑡

) ∣∣∣ (∑𝑛𝑇

𝑖=1 𝜆
𝑄
𝑖

)
𝑇𝑑 + 𝑃𝑡𝑇𝑡 = 𝑃𝑇,

𝑃𝑡 >
∑𝑇𝑡

𝑖=1

(
1

𝜆Σ
𝑇𝑡

− 1
𝜆Σ
𝑖

)}
, and the condition

𝑃𝑡 >
∑𝑇𝑡

𝑖=1

(
1

𝜆Σ
𝑇𝑡

− 1
𝜆Σ
𝑖

)
guarantees that, using (𝑃𝑡, 𝑇𝑡), all

𝑇𝑡 channels are filled, i.e., 𝐽 = 𝑇𝑡.

Note that the parameters that we want to optimize (29) over
are discrete valued 𝑇𝑡, and continuous valued 𝑃𝑡, and 𝝀𝑄.
Since 𝑇𝑡 is discrete, and 1 ≤ 𝑇𝑡 ≤ 𝑛𝑇 , we can perform an
exhaustive search over 𝑇𝑡 and solve 𝑛𝑇 reduced optimization
problems with fixed 𝑇𝑡 at each one. Then, we take the solution
that results in the maximum rate, i.e.,

𝑅 = max
1≤𝑇𝑡≤𝑛𝑇

𝑅𝑇𝑡 (30)

where

𝑅𝑇𝑡 = max
(𝝀𝑄,𝑃𝑡)∈ℛ𝑇𝑡

𝑇 − 𝑇𝑡

𝑇
𝐸

[
log

∣∣∣∣∣I+
∑𝑇𝑡

𝑖=1 𝜆
𝑄
𝑖 (𝜆

Σ
𝑖 − 𝜇𝑆)ẑ𝑖ẑ

†
𝑖

1 + 𝜇𝑆𝑃𝑑

∣∣∣∣∣
]

(31)

and ℛ𝑇𝑡 =
{(

𝝀𝑄, 𝑃𝑡

) ∣∣∣ (∑𝑛𝑇

𝑖=1 𝜆
𝑄
𝑖

)
𝑇𝑑 + 𝑃𝑡𝑇𝑡 = 𝑃𝑇, 𝑃𝑡 >∑𝑇𝑡

𝑖=1

(
1

𝜆Σ
𝑇𝑡

− 1
𝜆Σ
𝑖

)}
. While solving the inner maximization

problem, we define 𝑓𝑖(𝑃𝑡) =
𝜆Σ
𝑖 −𝜇𝑆

1+𝜇𝑆𝑃𝑑
, for 𝑖 = 1, . . . , 𝑇𝑡. In

this case, the inner optimization problem becomes

𝑅𝑇𝑡 = max
(𝝀𝑄,𝑃𝑡)∈ℛ𝑇𝑡

𝑇 − 𝑇𝑡

𝑇
𝐸

[
log

∣∣∣∣∣I+
𝑇𝑡∑
𝑖=1

𝜆𝑄
𝑖 𝑓𝑖(𝑃𝑡)ẑ𝑖ẑ

†
𝑖

∣∣∣∣∣
]
.(32)

Note that, for the inner optimization problem, in addition to
𝑇𝑡, if 𝑃𝑡 was fixed, 𝑓𝑖(𝑃𝑡) would also be fixed. In this case,
the problem in (32) would become exactly the same as the
corresponding convex optimization problem with perfect CSI
assumption at the receiver [7], where here, 𝑓𝑖(𝑃𝑡) replaces 𝜆Σ

𝑖

in [7, equation (8)].

In the optimization problem in (32), we have 𝑇𝑡 + 1
optimization variables, 𝜆𝑄

1 , . . . , 𝜆
𝑄
𝑇𝑡

, and 𝑃𝑡. In this case, the
problem is not necessarily convex due to the existence of
𝑃𝑡. Equation (32) is concave when 𝑇𝑡 = 1, which results
in an affine 𝑓1(𝑃𝑡). Therefore, in the most general case, the
solution of the first order necessary conditions will give a local
maximum. The Lagrangian for (32) can be written as

𝑇 − 𝑇𝑡

𝑇
𝐸

[
log

∣∣∣∣∣I+
𝑇𝑡∑
𝑖=1

𝜆𝑄
𝑖 𝑓𝑖(𝑃𝑡)ẑ𝑖ẑ

†
𝑖

∣∣∣∣∣
]

− 𝜇

((
𝑇𝑡∑
𝑖=1

𝜆𝑄
𝑖

)
𝑇𝑑 + 𝑃𝑡𝑇𝑡 − 𝑃𝑇

)
(33)

where 𝜇 is the Lagrange multiplier, and we omitted the
complementary slackness conditions related to the positiveness

of 𝜆𝑄
𝑖 and 𝑃𝑡 −

∑𝑇𝑡

𝑖=1

(
1

𝜆Σ
𝑇𝑡

− 1
𝜆Σ
𝑖

)
. By using the identity,

∂
∂𝑥 log ∣A+𝑥B∣ = tr

[
(A+ 𝑥B)−1B

]
which is proved in [5],

the KKT conditions can be written by taking the derivative of
the Lagrangian with respect to 𝜆𝑄

𝑖 ’s and 𝑃𝑡,

𝑇𝑑

𝑇
𝑓𝑖(𝑃𝑡)𝐸

[
z†𝑖A

−1z𝑖

]
≤ 𝜇𝑇𝑑, 𝑖 = 1, . . . , 𝑇𝑡

(34)

𝑇𝑑

𝑇

𝑇𝑡∑
𝑖=1

𝜆𝑄
𝑖 𝐸

[
z†𝑖A

−1z𝑖

] ∂𝑓𝑖(𝑃𝑡)

∂𝑃𝑡
= 𝜇𝑇𝑡 (35)

where A = I +
∑𝑇𝑡

𝑖=1 𝜆
𝑄
𝑖 𝑓𝑖(𝑃𝑡)ẑ𝑖ẑ

†
𝑖 , and the equality of

the last equation follows from the complementary slackness

condition, which says 𝑃𝑡 >
∑𝑇𝑡

𝑖=1

(
1

𝜆Σ
𝑇𝑡

− 1
𝜆Σ
𝑖

)
. If the com-

plementary slackness condition is not satisfied, i.e., if we had

𝑃𝑡 ≤ ∑𝑇𝑡

𝑖=1

(
1

𝜆Σ
𝑇𝑡

− 1
𝜆Σ
𝑖

)
, then at least one of the channels

out of 𝑇𝑡 channels could not be filled, i.e., 𝐽 < 𝑇𝑡, and
therefore this choice of (𝑃𝑡, 𝑇𝑡) pair is not optimal. Therefore,
the complementary slackness condition is always satisfied,
resulting in the equality in (35).

The 𝑖𝑡ℎ inequality in (34) is satisfied with equality whenever
the optimum 𝜆𝑄

𝑖 is non-zero, and with strict inequality when-
ever the optimum 𝜆𝑄

𝑖 is zero. Due to the expectation term,
we cannot directly solve for 𝜆𝑄

𝑖 in (34). Instead, we multiply
both sides of (34) by 𝜆𝑄

𝑖 ,

𝜆𝑄
𝑖

𝑇
𝑓𝑖(𝑃𝑡)𝐸

[
z†𝑖A

−1z𝑖

]
= 𝜆𝑄

𝑖 𝜇, 𝑖 = 1, . . . , 𝑇𝑡 (36)

We note that when 𝜆𝑄
𝑖 = 0, both sides of (36) are equal

to zero. Therefore, unlike (34), (36) is always satisfied with
equality for optimum eigenvalues. By summing both sides
over all antennas, we find 𝜇, and by substituting this 𝜇 into
(36), we find the fixed point equations which have to be
satisfied by the optimum eigenvalues,

𝜆𝑄
𝑖 =

𝜆𝑄
𝑖 𝑓𝑖(𝑃𝑡)𝐸

[
z†𝑖A

−1z𝑖

]
∑𝑛𝑇

𝑗=1 𝜆
𝑄
𝑗 𝑓𝑗(𝑃𝑡)𝐸

[
z†𝑗A−1z𝑗

]𝑃𝑑, 𝑖 = 1, . . . , 𝑇𝑡.

(37)
This gives a set of fixed point equations that can be used to
update 𝝀𝑄, however, we also need a fixed point equation to
update the value of 𝑃𝑡. For this, we look at the last KKT
equation. Note that when the optimum 𝜆𝑄

𝑖 is non-zero, the
corresponding inequality in (34) will be satisfied with equality
due to its corresponding complementary slackness condition.
Therefore, we pull the expectation terms from (34) for those
equations with non-zero 𝜆𝑄

𝑖 ’s, and insert them into (35). Since
those indices with 𝜆𝑄

𝑖 = 0 do not contribute to (35), we have

𝑇𝑡∑
𝑖=1

𝜆𝑄
𝑖

𝑓 ′
𝑖(𝑃𝑡)

𝑓𝑖(𝑃𝑡)
=

𝑇𝑡

𝑇𝑑
(38)

where we canceled 𝜇’s out on both sides. Now, we can use this
fixed-point equation to solve 𝑃𝑡 in terms of 𝜆𝑄

𝑖 ’s. We propose
the following fixed-point algorithm: at any given iteration, the
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Fig. 2. The convergence of the single-user algorithm with 𝑛𝑇 = 𝑛𝑅 = 3,
20 dB total average power, 𝑇 = 10, and one symbol long training, 𝑇𝑡 = 1.

algorithm first solves (38) for the next update of 𝑃𝑡 using

𝑇𝑡∑
𝑖=1

𝜆𝑄
𝑖 (𝑛)

𝑓 ′
𝑖(𝑃𝑡(𝑛+ 1))

𝑓𝑖(𝑃𝑡(𝑛+ 1))
=

𝑇𝑡

𝑇𝑑
(39)

and then, updates 𝜆𝑄
𝑖 (𝑛+ 1) using (37) for 𝑖 = 1, . . . , 𝑇𝑡

𝜆𝑄
𝑖 (𝑛+ 1) =

𝜆𝑄
𝑖 (𝑛)𝑓𝑖(𝑃𝑡(𝑛+ 1))𝐸

[
z†𝑖A

−1z𝑖

]
∑𝑛𝑇

𝑗=1 𝜆
𝑄
𝑗 (𝑛)𝑓𝑗(𝑃𝑡(𝑛+ 1))𝐸

[
z†𝑗A−1z𝑗

]𝑃𝑑

(40)

where 𝑃𝑑 = (𝑃𝑇−𝑃𝑡(𝑛+1)𝑇𝑡)
𝑇𝑑

. This algorithm finds the solution
for the training power 𝑃𝑡, and the eigenvalues of the transmit
covariance matrix 𝜆𝑄

1 , . . . , 𝜆
𝑄
𝑇𝑡

, for a fixed 𝑇𝑡, for 1 ≤ 𝑇𝑡 ≤
𝑛𝑇 . We run 𝑛𝑇 such algorithms, and the solution of (29) is
found by taking the one that results in the largest rate, which
gives us 𝑇𝑡.

As a result, we solved the joint channel estimation and
resource allocation problem that we considered in this paper.
Through 𝑇𝑡 and 𝑃𝑡, we find the allocation of available time
and power over the training and data transmission phases,
since total block length and power is fixed. Through Theorem
2, we find the optimum transmit directions, and through
𝜆𝑄
1 , . . . , 𝜆

𝑄
𝑇𝑡

, we find the allocation of data transmission power
over these transmit directions. Finally, the training signal S is
determined by 𝑇𝑡 and 𝑃𝑡 through Theorem 1.

Analytical proof of the convergence of this algorithm seems
to be more complicated than the proof in the case when there is
no channel estimation error [7], and seems to be intractable for
now. However, in our extensive simulations, we observed that
the algorithm always converged. As an example, in Figures 2-
4, we consider a system with 𝑛𝑇 = 𝑛𝑅 = 3 having SNR,
𝑃 = 20 dB, and block length, 𝑇 = 10. For this system,
we run our algorithm for all three possible values of the
training symbol duration, i.e., 𝑇𝑡 = 1, 2, 3. We observe in
Figures 2-4 that estimating two of the three dimensions of
the channel is optimum for this setting. Since the power is
relatively high with respect to the eigenvalues of the channel
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Fig. 3. The convergence of the single-user algorithm with 𝑛𝑇 = 𝑛𝑅 = 3,
20 dB total average power and 𝑇 = 10, and two symbols long training,
𝑇𝑡 = 2.
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Fig. 4. The convergence of the single-user algorithm with 𝑛𝑇 = 𝑛𝑅 = 3,
20 dBtotal average power and 𝑇 = 10, and three symbols long training,
𝑇𝑡 = 3.

covariance, it should be allocated almost equally among the
spatial dimensions when there is perfect CSI at the receiver.
We see that this is also the case in our model as well. The
only difference is that the power is allocated almost equally
to the spatial dimensions that are trained. We refer the reader
to the Part II [13] of this two-part paper for a more detailed
numerical analysis.

IV. CONCLUSIONS

We analyzed the joint optimization of the channel estimation
and data transmission parameters of a a single-user MIMO
block-fading channel where the receiver has a noisy estimate
of the channel and the transmitter has the partial CSI in the
form of covariance feedback. First the optimum training signal
to minimize the MMSE is found, and then, we formulated the
joint optimization problem over the eigenvalues of the transmit
covariance matrix and the channel estimation parameters. This
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is solved by introducing a number of reduced optimization
problems, each of which can be solved efficiently using
the proposed iterative algorithm. Through simulations, it is
observed that the proposed iterative algorithm converges to
the same point regardless of the initial point of the iterations.
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