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Joint Channel Estimation and
Resource Allocation for MIMO Systems–Part II:

Multi-User and Numerical Analysis
Alkan Soysal, Member, IEEE, and Sennur Ulukus, Member, IEEE

Abstract—This is the second part of a two-part paper on
the joint channel estimation and resource allocation problem in
MIMO systems with noisy channel estimation at the receiver side
and partial CSI, in the form of covariance feedback, available at
the transmitter side. We consider transmit-side correlated MIMO
channels with block fading, where each block is divided into
training and data transmission phases. In this paper, we extend
the single-user results of Part I to the multiple access channel. For
the data transmission phase, we propose an iterative algorithm
to solve for the optimum system resources such as time, power
and spatial dimensions. This algorithm updates the parameters
of the users in a round-robin fashion. In particular, the algorithm
updates the training and data transmission parameters of a user,
when those of the rest of the users are fixed, in a way to maximize
the achievable sum-rate in a multiple access channel; and iterates
over users in a round-robin fashion. Finally, we provide a detailed
numerical analysis to support the analytical results of both parts
of this two-part paper.

Index Terms—Multi-user MIMO, MIMO multiple access chan-
nel, partial CSI, covariance feedback, optimum power allocation,
channel estimation.

I. INTRODUCTION

IN Part I [2] of this paper, we studied the optimization of the
achievable data rate jointly in terms of the channel estima-

tion and data transmission parameters of a single-user, block-
fading, transmit-side correlated MIMO channel with noisy
channel estimation at the receiver, and partial channel state
information (CSI) available at the transmitter. We concluded
that there is a trade-off between estimating the channel better
and increasing the achievable data rate [2].

In wireless communication scenarios, the achievable rate of
the system depends crucially on the amount of CSI available
at the receivers and the transmitters. The CSI is observed only
by the receiver, which can estimate it and feed the estimated
CSI back to the transmitter. However, measuring the CSI and
providing CSI feedback to the transmitter uses communication
resources, such as time, power and spatial dimensions which
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could otherwise be used for useful information transmission.
In a multi-user setting, the amount of resources required to
measure the channel and provide CSI feedback to the transmit-
ter increases substantially. When perfect channel information
is assumed to be available at the receiver and the transmitters
at no cost, [3] finds the optimum transmission strategy, which
is a multi-user water-filling scheme. Under a more practical
assumption, when there is perfect CSI at the receiver but
only partial CSI available at the transmitters, [4], [5] finds
the optimum transmit strategies for all users. There has been
works such as [2], [6], [7], [8] that considered noisy channel
estimates at the receiver, but they restricted attention to a
single-user scenario.

Part II extends the results of Part I to multiple access
channels. In a multi-user setting, we first consider the channel
estimation process and find the optimum training signals for
all users. Although all of the users are allowed to use the
available training duration simultaneously, we find that the
training signals of the users should be orthogonal in time.
Since the total block length, and therefore the total training
duration is limited, each user can only train a fraction of its
available channel dimensions, which might result in shorter
individual training signal durations compared to the single-
user case. However, as a result of having shorter individual
training signal duration and the conservation of energy, the
training signal power that is used by a particular user in a
multi-user case could be larger than the training signal power
that the same user would use in a single-user case. This higher
effective training power results in a better channel estimate,
and hence lower channel estimation error. Therefore, although
fewer dimensions of the channel are estimated, the channel
estimation error corresponding to those estimated dimensions
become smaller.

Next, we move to the data transmission phase, and derive
an achievable sum-rate expression that includes the channel
estimation and data transmission parameters of all users. We
first determine the optimum transmit directions for all users.
Then, we develop an algorithm that maximizes the sum-rate
jointly over the individual training durations of all users,
the allocation of power of each user between training and
data transmission phases, and also the allocation of the data
transmission power of each user over its transmit directions.
Finally, we provide detailed simulation results that investigates
the effects of the power constraint, coherence interval (block
length), and channel covariance matrices on our results.
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II. SYSTEM MODEL

We consider a multiple access channel (MAC), which
corresponds to the uplink of a cellular system, with multiple
transmit antennas at every user and multiple receive antennas
at the receiver. The channel between user 𝑘 and the receiver
is represented by a random matrix H𝑘 with dimensions of
𝑛𝑅 × 𝑛𝑇 , where 𝑛𝑅 and 𝑛𝑇 are the number of antennas at
the receiver and at the transmitters, respectively. We consider
a block fading scenario where the channel remains constant
for a block (𝑇 symbols), and changes to an i.i.d. realization
at the end of the block. In order to estimate the channels, the
receiver performs a linear MMSE estimation for the channels
of the users using training symbols over 𝑇𝑡 symbols. During
the remaining 𝑇𝑑 = 𝑇 −𝑇𝑡 symbols, data transmission occurs.
While the receiver has a noisy estimate of the realization of
the fading channel, the transmitters have only the statistical
model of the channel. Each transmitter sends a vector x𝑘𝑛,
and the received vector at time 𝑛 is

r𝑛 =

𝐾∑
𝑘=1

H𝑘x𝑘𝑛 + n𝑛, 𝑛 = 1, . . . , 𝑇 (1)

where 𝐾 is the number of users, n𝑛 is a zero-mean, identity-
covariance complex Gaussian vector, at time 𝑛, and the entries
of H𝑘 are complex Gaussian random variables. Each user has
a power constraint of 𝑃𝑘 = 1

𝑇 𝐸[
∑

𝑛 x
†
𝑘𝑛x𝑘𝑛], averaged over

𝑇 symbols1.
The statistical model that we consider is the “partial CSI

with covariance feedback” model where each transmitter
knows the channel covariance information of all transmitters,
in addition to the distribution of the channel. In this paper, we
will assume that the receiver does not have any physical re-
strictions and therefore, there is sufficient spacing between the
antenna elements on the receiver such that the signals received
at different antenna elements are uncorrelated. However, there
exists correlation between the signals transmitted by different
antenna elements. By generalizing the single-user model of
Part I [2], the channel can be written as

H𝑘 = Z𝑘Σ
1/2
𝑘 (2)

where the entries of Z𝑘 are i.i.d., zero-mean, unit-variance
complex Gaussian random variables. From this point on, we
will refer to matrix Σ𝑘 as the channel covariance feedback
matrix of user 𝑘. Similar covariance feedback models have
been used in [4], [5], [9], [10].

III. JOINT OPTIMIZATION FOR MULTI-USER MIMO

Note that in our model, a transmission block is divided
into training and data transmission phases. During the training
phase, each user has training signal S𝑘, training signal power
𝑃𝑡𝑘 , and training signal duration 𝑇𝑡. During the data transmis-
sion phase, each user has data transmission power 𝑃𝑑𝑘

, which
appears as a constraint on the trace of the transmit covariance
matrix. Our goal in this paper is to find the optimum values
of these training and the data transmission parameters.

1Note that since the noise power is assumed to be unity, 𝑃𝑘 is in fact the
relative power with respect to noise power. It can be regarded as an SNR
value.

A. Training and Channel Estimation Phase

The input-output relationship during the training phase of a
multiple access channel is

R𝑡 =

𝐾∑
𝑘=1

H𝑘S𝑘 +N𝑡 (3)

where S𝑘 is an 𝑛𝑇 × 𝑇𝑡 dimensional training signal for
user 𝑘 that will be chosen and known at both ends, R𝑡

and N𝑡 are 𝑛𝑅 × 𝑇 dimensional received signal and noise
matrices, respectively. The 𝑛𝑡ℎ column of the matrix equation
in (3) represents the input-output relationship at time 𝑛. The
power constraint for the training input signal for user 𝑘 is
1
𝑇𝑡

tr(SS†) ≤ 𝑃𝑡𝑘 .

Since the receiver is supposed to estimate the channels of
all users during the same training phase with the knowledge of
all training symbols, it can regard the multi-user channel as a
single-user channel, where the channel and the training signal
matrices of users are stacked together. We can then write (3)
equivalently as

R𝑡 = H̄S̄+N𝑡 (4)

where H̄ = [H1, . . . ,H𝐾 ] is an 𝑛𝑅 × 𝐾𝑛𝑇 dimensional
channel matrix, and S̄ = [S†

1, . . . ,S
†
𝐾 ]† is a 𝐾𝑛𝑇 × 𝑇𝑡

dimensional training signal matrix. Note that, we put the
channel matrices next to each other to form longer rows,
and the training symbols on top of each other to form longer
columns. In this equivalent problem, the receiver will estimate
H̄ using the output R𝑡 and the training signal S̄.

Due to our channel model in (2), the entries in a row of
H𝑘 are correlated, and the entries in a column of H𝑘 are
uncorrelated. In other words, for each user, row 𝑖 of the
channel matrix is i.i.d. with row 𝑗. This also holds for the
stacked matrix, H̄. Let us represent row 𝑖 of H𝑘 as h†

𝑘𝑖, where
𝐸[h𝑘𝑖h

†
𝑘𝑖] = Σ𝑘, 𝑖 = 1, . . . 𝑛𝑅, and row 𝑖 of H̄ as h̄𝑖 =

[h†
1𝑖, . . . ,h

†
𝐾𝑖]

†, where Σ̄ = 𝐸[h̄𝑖h̄
†
𝑖 ] = diag{Σ1, . . . ,Σ𝐾}

is a block diagonal matrix, having Σ𝑘 on its diagonals.

Let the eigenvalue representation of the channel covariance
matrix of user 𝑘 be Σ𝑘 = UΣ𝑘

ΛΣ𝑘
U†

Σ𝑘
, then the eigenvectors

of the stacked channel covariance matrix Σ̄ = ŪΣΛ̄ΣŪ
†
Σ can

also be written as ŪΣ = diag {UΣ1 , . . . ,UΣ𝐾} [11, Lemma
1.3.10], which is a block diagonal matrix as well.

Since a row of H̄ is formed by combining the rows of all
H𝑘 into a single, and longer row, we can conclude that the
rows of H̄ are also i.i.d., and the receiver can estimate each
of them independently using the same training symbols. The
𝑖𝑡ℎ row of (4), which represents the received signal at the
𝑖𝑡ℎ antenna of the receiver over the training duration, can be
written as

r𝑡𝑖 = S̄†h̄𝑖 + n𝑡𝑖. (5)

Since this is equivalent to a single-user channel estimation
problem with the exception of a block diagonal channel
covariance matrix, we can use the MMSE estimation results
of Part I [2]. Denoting the estimate of h̄𝑖 as ĥ𝑖 = M̄r𝑡𝑖, and
the channel estimation error as h̃𝑖 = h̄𝑖 − ĥ𝑖, the optimum
MMSE estimator can be found as M̄∗ = Σ̄S̄

(
S̄†Σ̄S̄+ I

)−1
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[2], and the mean square error becomes,

min
M̄

𝐸
[
h̃†
𝑖 h̃𝑖

]
= tr

((
Σ̄−1 + S̄S̄†)−1

)
(6)

Note that mean square error of the channel estimation process
can be further decreased by choosing the optimum training
signal S̄∗ to minimize (6). The following theorem finds S̄∗,
and training signals of individual users S∗

𝑘, for a given training
power and training duration.

Theorem 1: For given Σ𝑘 = UΣ𝑘
ΛΣ𝑘

U†
Σ𝑘

, 𝑃𝑡𝑘 , 𝑇𝑡, and
the power constraints tr(S𝑘S

†
𝑘) ≤ 𝑃𝑡𝑘𝑇𝑡, the 𝐾𝑛𝑇 × 𝑇𝑡

dimensional optimum stacked training signal S̄∗ that mini-
mizes the total power of the channel estimation error vector is
S̄∗ = ŪΣΛ̄

1/2
𝑆 , and the 𝑛𝑇 ×𝐾 dimensional optimum training

signal of user 𝑘 is S∗
𝑘 =

[
0, . . . ,0,UΣ𝑘

Λ
1/2
𝑆𝑘

,0, . . . ,0
]

with

𝜆𝑆
𝑘𝑖 =

(
1

𝜇𝑆
𝑘

− 1

𝜆Σ
𝑘𝑖

)+

, 𝑖 = 1, . . . ,min(𝑛𝑇 , 𝑇𝑡𝑘) (7)

where (𝜇𝑆
𝑘 )

2 is the Lagrange multiplier that satisfies the power
constraint with 𝜇𝑆

𝑘 = 𝐽𝑘

𝑃𝑡𝑘
+
∑𝐽𝑘

𝑖=1
1

𝜆Σ
𝑘𝑖

, and 𝐽𝑘 is the largest

index that has non-zero 𝜆𝑆
𝑘𝑖 for user 𝑘.

Proof: Let us have S̄ = Ū𝑆Λ̄
1/2
𝑆 V̄†

𝑆 . The expression in (6)
is minimized when Σ̄−1 and S̄S̄† have the same eigenvectors
[12]. Therefore, we have Ū𝑆 = ŪΣ. Since, S̄S̄† = Ū𝑆Λ̄𝑆Ū

†
𝑆 ,

and the unitary matrix V̄𝑆 does not appear in the objective
function and the constraint, we can choose V̄𝑆 = I. Now, we
have

S̄ = ŪΣΛ̄
1/2
𝑆 (8)⎡

⎢⎣
S1

...
S𝐾

⎤
⎥⎦ =

⎡
⎢⎣

UΣ1 . . . 0
...

. . .
...

0 ⋅ ⋅ ⋅ UΣ𝐾

⎤
⎥⎦
⎡
⎢⎢⎣

Λ
1/2
𝑆1

. . . 0
...

. . .
...

0 ⋅ ⋅ ⋅ Λ
1/2
𝑆𝐾

⎤
⎥⎥⎦

(9)

where each user has S𝑘 =
[
0, . . . ,0,UΣ𝑘

Λ
1/2
𝑆𝑘

,0, . . . ,0
]
.

Note that S𝑘 is an 𝑛𝑇 × 𝑇𝑡 dimensional matrix, and UΣ𝑘
is

an 𝑛𝑇 ×𝑛𝑇 dimensional matrix. Let us denote the dimension
of Λ𝑆𝑘

as 𝑛𝑇 × 𝑇𝑡𝑘 in such a way that
∑𝐾

𝑘=1 𝑇𝑡𝑘 = 𝑇𝑡.
Inserting S̄ into (6), the optimization problem can be written

as

�̃�𝑠𝑢𝑚 = min
tr(Λ𝑆𝑘

)≤𝑃𝑡𝑘
𝑇𝑡𝑘

𝑘=1,...,𝐾

tr
((

Λ̄−1
Σ + Λ̄𝑆

)−1
)

(10)

= min
tr(Λ𝑆𝑘

)≤𝑃𝑡𝑘
𝑇𝑡𝑘

𝑘=1,...,𝐾

𝐾∑
𝑘=1

tr
((

Λ−1
Σ𝑘

+Λ𝑆𝑘

)−1
)
. (11)

The Langrangian of the problem in (11) can be written as

𝐾∑
𝑘=1

𝑛𝑇∑
𝑖=1

1
1

𝜆Σ
𝑘𝑖

+ 𝜆𝑆
𝑘𝑖

+

𝐾∑
𝑘=1

(𝜇𝑆
𝑘 )

2

(
𝑛𝑇∑
𝑖=1

𝜆𝑆
𝑘𝑖 − 𝑃𝑡𝑘𝑇𝑡𝑘

)
(12)

where (𝜇𝑆
𝑘 )

2 are the Lagrange multipliers. The Lagrangian is
a convex function of 𝜆𝑆

𝑘𝑖’s, therefore the solution that satisfies
the KKT conditions is the unique optimum solution. This gives
us (7), which is water-filling the available power of each user
over the eigenvalues of its own channel covariance matrix.
In order to calculate 𝜇𝑆

𝑘 , we sum both sides of (7) over all

antennas to get 𝜇𝑆 = 𝐽𝑘

𝑃𝑡𝑘
+
∑𝐽𝑘

𝑖=1
1

𝜆Σ
𝑖

, where 𝐽𝑘 is the largest

index that has non-zero 𝜆𝑆
𝑘𝑖. □

Similar to the single-user case, for any given 𝑃𝑡𝑘 , and
𝑇𝑡𝑘 > 𝑛𝑇 , increasing 𝑇𝑡𝑘 beyond 𝑛𝑇 does not result in better
channel estimates. However, larger 𝑇𝑡𝑘 will result in smaller
data transmission length, and will decrease the achievable rate
of the data transmission phase. Therefore, it is sufficient to
consider only 𝑇𝑡𝑘 ≤ 𝑛𝑇 , which we will assume for the rest
of this paper. Due to the constraint on the training duration,
intuitively fewer dimensions of the individual channels will
be estimated for each user. In a multi-user setting, training
duration cannot be the number of users multiplied with the
training duration of each user in a single-user environment,
since the total training duration will need to be less than the
block length. Therefore, we conclude that individual training
duration of a user in a multi-user setting will be shorter than
the training duration of that user in a single-user environment.
Since the total energy is the same, training power will be
higher for a shorter training duration. Higher training power
in turn, will result in a better channel estimate, and hence
lower channel estimation error. As a result, although fewer
dimensions of the channel will be estimated, the channel
estimation error corresponding to those estimated dimensions
will be smaller. It was shown in other contexts as well that the
degrees of freedom of a MAC does not increase by increasing
the number of users. For example in [13], the degrees of
freedom is limited by the number of receive antennas. In our
case, it is limited by the duration of the training phase, which
itself depends on several variables including the number of
receive antennas.

Theorem 1 states that orthogonality in the time domain
holds over the users in a multi-user setting as well. Since the
receiver can stack up the channels for the channel estimation
process, and the resulting stacked channel covariance matrix
is block-diagonal, the problem is equivalent to a single-user
problem where all transmit antennas are on the same unit,
but antennas are put into 𝐾 groups. Each group is correlated
within the group, but groups are uncorrelated, which results
in a block diagonal channel covariance matrix. Since this is
an equivalent single-user problem, training signals of different
users are orthogonal in time. This is achieved by transmitting
the training signal of user 𝑘 during its own time slot for 𝑇𝑡𝑘

channel uses.

Note that 𝜇𝑆
𝑘 is a function of only 𝑃𝑡𝑘 and 𝑇𝑡𝑘 , both of

which will be chosen to maximize the sum-rate of the data
transmission phase. The value of 𝑇𝑡𝑘 determines the total
number of available parallel channels for user 𝑘, and the
value of 𝑃𝑡𝑘 determines the number of channels that will be
estimated. The parametric values of 𝑃𝑡𝑘 and 𝑇𝑡𝑘 will appear
in the sum-rate formula. After the sum-rate maximization is
performed, the optimum 𝑃𝑡𝑘 and 𝑇𝑡𝑘 will be found, and this
in turn, will give us the S∗

𝑘 through Theorem 1.

Next, we will state the eigenvalues of the covariance
matrices of the estimated channel vector, and the channel
estimation error vector for all users. This derivation is similar
to the single-user case, which can be found in Part I [2].
The covariance matrix of the channel estimation error of
user 𝑘 can be found as Σ̃𝑘 = UΣ𝑘

(
Λ−1

Σ𝑘
+Λ𝑆𝑘

)−1
U†

Σ𝑘
,

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on October 02,2022 at 02:21:42 UTC from IEEE Xplore.  Restrictions apply. 



SOYSAL and ULUKUS: JOINT CHANNEL ESTIMATION AND RESOURCE ALLOCATION FOR MIMO SYSTEMS–PART II: 635

where the eigenvalues are given as �̃�Σ
𝑘𝑖 = min

(
𝜆Σ
𝑘𝑖, 𝜇

𝑆
𝑘

)
.

Similarly, the covariance matrix of the estimated channel of
user 𝑘 can be found using the orthogonality principle as
Σ̂ = ŪΣ

(
Λ̄Σ − Λ̃Σ

)
Ū†

Σ, where the eigenvalues are given

as �̂�Σ
𝑘𝑖 = max

(
𝜆Σ
𝑘𝑖 − 𝜇𝑆

𝑘 , 0
)
.

B. Data Transmission Phase

The sum-rate of a multiple access channel can be derived
using the stacked channel and input matrices. We can write
(1) as

r =

𝐾∑
𝑘=1

Ĥ𝑘x𝑘 +

𝐾∑
𝑘=1

H̃𝑘x𝑘 + n = Ĥx̄+ H̃x̄+ n (13)

where Ĥ = [Ĥ1, . . . , Ĥ𝐾 ], H̃ = [H̃1, . . . , H̃𝐾 ] are 𝑛𝑅×𝐾𝑛𝑇

dimensional, and x̄ = [x†
1, . . . ,x

†
𝐾 ]† is 𝐾𝑛𝑇 ×1 dimensional.

Although the optimum input distribution is not known, we
achieve the following lower bound with Gaussian x̄ [7],

𝐶𝑠𝑢𝑚
𝑙𝑏 = 𝐼(r; x̄∣Ĥ) ≥ 𝐸Ĥ

[
log
∣∣∣I+R−1

H̃x̄+n
ĤQ̄Ĥ†

∣∣∣] (14)

where RH̃x̄+n is the covariance matrix of the effective noise,
H̃x̄ + n, and Q̄ = 𝐸[x̄x̄†]. Since the inputs for different
users are independent from each other, Q̄ is a block di-
agonal matrix, having Q𝑘 in its diagonals with the power
constraint2 tr(Q𝑘) ≤ 𝑃𝑑𝑘

. As a result, we have ĤQ̄Ĥ† =∑𝐾
𝑘=1 Ĥ𝑘Q𝑘Ĥ

†
𝑘. The covariance of the effective noise can

be calculated as RH̃x̄+n = I+
∑𝐾

𝑘=1 𝐸H̃𝑘

[
H̃𝑘Q𝑘H̃

†
𝑘

]
. From

Part I [2], we know that 𝐸
[
H̃𝑘Q𝑘H̃

†
𝑘

]
= tr(Q𝑘Σ̃𝑘)I. Since

our goal is to find the largest lower bound, i.e., the largest
achievable rate with Gaussian signaling, maximization of (14)
over the entire block becomes

𝑅𝑠𝑢𝑚 = max
(Q𝑘,𝑃𝑡𝑘

,𝑇𝑡𝑘
)∈𝒮𝑘

tr(Q𝑘)≤𝑃𝑑𝑘
,∀𝑘

𝑇𝑑𝐸Ĥ𝑘

[
log

∣∣∣∣∣I+
∑𝐾

𝑘=1 Ĥ𝑘Q𝑘Ĥ
†
𝑘

1 +
∑𝐾

𝑘=1 tr(Q𝑘Σ̃𝑘)

∣∣∣∣∣
]

(15)

where 𝒮𝑘 =
{
(Q𝑘, 𝑃𝑡𝑘 , 𝑇𝑡𝑘)

∣∣∣tr(Q𝑘)𝑇𝑑 + 𝑃𝑡𝑘𝑇𝑡𝑘 = 𝑃𝑘𝑇
}
,

and the coefficient 𝑇𝑑 = 𝑇−𝑇𝑡

𝑇 reflects the amount of time that
is spend during the training phase. Note that the maximization
is over the parameters of all users, where user 𝑘 has the
training parameters 𝑃𝑡𝑘 , and 𝑇𝑡𝑘 , and the data transmission
parameter Q𝑘, which can be decomposed into its eigenvectors
(the transmit directions) and eigenvalues (powers along the
transmit directions).

1) Transmit Directions: When the CSI at the receiver is
perfect, [5] showed that the eigenvectors of the transmit
covariance matrix of each user must be equal to the eigen-
vectors of the channel covariance matrix of that user, i.e.,
U𝑄𝑘

= UΣ𝑘
. In other words, single-user transmit directions

strategy is optimum in a multi-user case as well. In the
following theorem, we show that this is also true when there
is channel estimation error at the receiver.

Theorem 2: Let Σ𝑘 = UΣ𝑘
ΛΣ𝑘

U†
Σ𝑘

be the spectral de-
composition of the covariance matrix of the channel of user

2Note that since the noise power is assumed to be unity, 𝑝𝑑𝑘 and the
eigenvalues of 𝑄𝑘 are relative power values with respect to the noise power.
They can be regarded as SNR values.

𝑘. Then, the optimum transmit covariance matrix Q𝑘 of user
𝑘 has the form Q𝑘 = UΣ𝑘

Λ𝑄𝑘
U†

Σ𝑘
.

The proof of Theorem 2 follows the proof of Theorem 2 in
Part I of the paper [2] quite closely, and therefore is omitted
here due to space limitations. It can be found in [14]. Using
Theorem 2, we can write the optimization problem in (15) as,

𝑅𝑠𝑢𝑚 = max
(𝝀

𝑄
𝑘

,𝑃𝑡𝑘
,𝑇𝑡𝑘

)∈𝒫𝑘

𝑘=1,...,𝐾

𝑇𝑑𝐸ẑ𝑘𝑖

[
log

∣∣∣∣∣I+
∑

𝑘

∑𝑛𝑇

𝑖=1 𝜆
𝑄
𝑘𝑖�̂�

Σ
𝑘𝑖ẑ𝑘𝑖ẑ

†
𝑘𝑖

1 +
∑

𝑘

∑𝑛𝑇

𝑖=1 𝜆
𝑄
𝑘𝑖�̃�

Σ
𝑘𝑖

∣∣∣∣∣
]

(16)

where ẑ𝑘𝑖, which is an 𝑛𝑅 × 1 dimensional i.i.d., zero-
mean, identity-covariance Gaussian random vector, is the
𝑖𝑡ℎ column of Ẑ𝑘𝑖, 𝝀𝑄

𝑘 = [𝜆𝑄
𝑘1, . . . , 𝜆

𝑄
𝑘𝑛𝑇

], and 𝒫𝑘 ={(
𝝀𝑄
𝑘 , 𝑃𝑡𝑘 , 𝑇𝑡𝑘

) ∣∣∣ (∑𝑛𝑇

𝑖=1 𝜆
𝑄
𝑘𝑖

)
𝑇𝑑 + 𝑃𝑡𝑘𝑇𝑡𝑘 = 𝑃𝑘𝑇

}
.

2) Power Allocation Policy: For a MIMO-MAC system
with perfect CSI at the receiver and partial CSI at the trans-
mitters, [4] proposes an algorithm to find the optimum power
allocation policy. However, the algorithm in [4] is not suitable
to find the optimum values of 𝑃𝑡𝑘 and 𝑇𝑡𝑘 , if directly applied
to the model in this paper. Existence of 𝑃𝑡𝑘 and 𝑇𝑡𝑘 violates
the symmetry in [4], and changes the form of the objective
function. Therefore, in this paper, we modify the algorithm in
[4] so that the new algorithm finds the optimum 𝑃𝑡𝑘 and 𝑇𝑡𝑘

as well as the powers along the transmit directions.

By plugging �̂�Σ
𝑘𝑖 and �̃�Σ

𝑘𝑖 into (16), choosing 𝜆𝑄
𝑘𝑖 = 0, for

𝑖 = 𝐽𝑘 +1, . . . , 𝑛𝑇 due to the fact that they do not contribute
to the numerator, we get

𝑅𝑠𝑢𝑚= max
(𝝀

𝑄
𝑘

,𝑃𝑡𝑘
,𝑇𝑡𝑘

)∈𝒫𝑘

𝑘=1,...,𝐾

𝑇𝑑𝐸

[
log

∣∣∣∣∣I+
∑

𝑘

∑𝐽𝑘

𝑖=1 𝜆
𝑄
𝑘𝑖(𝜆

Σ
𝑘𝑖−𝜇𝑆

𝑘 )ẑ𝑘𝑖ẑ
†
𝑘𝑖

1 +
∑

𝑘 𝜇
𝑆
𝑘𝑃𝑑𝑘

∣∣∣∣∣
]

(17)

In (17), the parameters of the optimization problem are
the powers of all users 𝜆𝑄

𝑘1, . . . , 𝜆
𝑄
𝑘𝑇𝑡𝑘

along the transmit
directions, the training signal powers 𝑃𝑡𝑘 of all users, and
the training durations 𝑇𝑡𝑘 of all users. Solving for all these
variables simultaneously seems intractable. Therefore, we pro-
pose a Gauss-Seidel type, round-robin algorithm that solves
(17) iteratively over the users as in [4]. When updating
the parameters corresponding to user 𝑘, we assume that the
parameters of the rest of the users are fixed. The optimization
problem corresponding to an update of each user becomes

𝑅𝑘
𝑠𝑢𝑚= max

(𝝀𝑄
𝑘 ,𝑃𝑡𝑘

,𝑇𝑡𝑘
)∈𝒫𝑘

𝑇𝑑𝐸

[
log

∣∣∣∣∣Φ+

∑𝐽𝑘

𝑖=1 𝜆
𝑄
𝑘𝑖(𝜆

Σ
𝑘𝑖−𝜇𝑆

𝑘 )ẑ𝑘𝑖ẑ
†
𝑘𝑖

𝜙+ 𝜇𝑆
𝑘𝑃𝑑𝑘

∣∣∣∣∣
]

(18)

where Φ = I +
∑𝐾

𝑙 ∕=𝑘

∑𝐽𝑙
𝑖=1 𝜆𝑄

𝑙𝑖(𝜆
Σ
𝑙𝑖−𝜇𝑆

𝑙 )ẑ𝑙𝑖ẑ
†
𝑙𝑖

1+
∑𝐾

𝑙=1 𝜇𝑆
𝑙 𝑃𝑑𝑙

, and 𝜙 = 1 +∑𝐾
𝑙 ∕=𝑘 𝜇

𝑆
𝑙 𝑃𝑑𝑙

. Note that the optimization problem in (18) is
now a single-user problem with fixed interference from the
other users. Therefore, we can follow arguments similar to
those in the single-user case in Part I [2]. Since for any pair
(𝑃𝑡𝑘 , 𝑇𝑡𝑘 ) that results in 𝐽𝑘 < 𝑇𝑡𝑘 , we can find another pair
(𝑃𝑡𝑘 , 𝑇

′
𝑡𝑘

) that results in a higher rate, it is sufficient to search
over those (𝑃𝑡𝑘 , 𝑇𝑡𝑘) pairs that results in 𝐽𝑘 = 𝑇𝑡𝑘 . We can
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now write (18) as

𝑅𝑘
𝑠𝑢𝑚= max

(𝝀𝑄
𝑘 ,𝑃𝑡𝑘

,𝑇𝑡𝑘
)∈ℛ𝑘

𝑇𝑑𝐸

[
log

∣∣∣∣∣Φ+

∑𝑇𝑡𝑘

𝑖=1 𝜆
𝑄
𝑘𝑖(𝜆

Σ
𝑘𝑖−𝜇𝑆

𝑘 )ẑ𝑘𝑖ẑ
†
𝑘𝑖

𝜙+ 𝜇𝑆
𝑘𝑃𝑑𝑘

∣∣∣∣∣
]

(19)

where ℛ𝑘 =
{(
𝝀𝑄
𝑘 , 𝑃𝑡𝑘 , 𝑇𝑡𝑘

)∣∣∣(∑𝑛𝑇

𝑖=1𝜆
𝑄
𝑘𝑖

)
𝑇𝑑+𝑃𝑡𝑘𝑇𝑡𝑘 =𝑃𝑘𝑇,

𝑃𝑡𝑘 >
∑𝑇𝑡𝑘

𝑖=1

(
1

𝜆Σ
𝑇𝑡𝑘

− 1
𝜆Σ
𝑖

)}
, and the condition

𝑃𝑡𝑘 >
∑𝑇𝑡𝑘

𝑖=1

(
1

𝜆Σ
𝑇𝑡𝑘

− 1
𝜆Σ
𝑖

)
guarantees that, using the pair

(𝑃𝑡𝑘 , 𝑇𝑡𝑘), all 𝑇𝑡𝑘 channels are filled, i.e., 𝐽𝑘 = 𝑇𝑡𝑘 . Note
that the parameters that we want to optimize (19) over are
discrete valued 𝑇𝑡𝑘 , and continuous valued 𝑃𝑡𝑘 , and 𝜆𝑄

𝑘𝑖, for
𝑖 = 1, . . . , 𝑇𝑡𝑘 . Since 𝑇𝑡𝑘 is discrete, and 1 ≤ 𝑇𝑡𝑘 ≤ 𝑛𝑇 ,
we can perform an exhaustive search over 𝑇𝑡𝑘 and solve 𝑛𝑇

reduced optimization problems with fixed 𝑇𝑡𝑘 in each one.
Then, we take the solution that results in the maximum rate,
i.e.,

𝑅𝑘
𝑠𝑢𝑚 = max

1≤𝑇𝑡𝑘
≤𝑛𝑇

𝑅
𝑘,𝑇𝑡𝑘
𝑠𝑢𝑚 (20)

where

𝑅
𝑘,𝑇𝑡𝑘
𝑠𝑢𝑚 = max

(𝝀𝑄,𝑃𝑡)∈ℛ𝑘𝑇𝑡𝑘

𝑇𝑑𝐸

[
log

∣∣∣∣∣Φ+

∑𝑇𝑡𝑘

𝑖=1 𝜆
𝑄
𝑘𝑖(𝜆

Σ
𝑘𝑖−𝜇𝑆

𝑘 )ẑ𝑘𝑖ẑ
†
𝑘𝑖

𝜙+ 𝜇𝑆
𝑘𝑃𝑑𝑘

∣∣∣∣∣
]

(21)

and ℛ𝑘𝑇𝑡𝑘
=
{(
𝝀𝑄
𝑘 , 𝑃𝑡𝑘

)∣∣∣(∑𝑛𝑇

𝑖=1 𝜆
𝑄
𝑘𝑖

)
𝑇𝑑 + 𝑃𝑡𝑘𝑇𝑡𝑘 = 𝑃𝑘𝑇,

𝑃𝑡𝑘 >
∑𝑇𝑡𝑘

𝑖=1

(
1

𝜆Σ
𝑇𝑡𝑘

− 1
𝜆Σ
𝑖

)}
. While solving for the inner

maximization problem, we define 𝑓𝑘𝑖(𝑃𝑡𝑘) =
𝜆Σ
𝑘𝑖−𝜇𝑆

𝑘

𝜙+𝜇𝑆
𝑘𝑃𝑑𝑘

, for
𝑖 = 1, . . . , 𝑇𝑡𝑘 . In this case, the inner optimization problem
becomes

𝑅
𝑘,𝑇𝑡𝑘
𝑠𝑢𝑚 = max

(𝝀𝑄,𝑃𝑡)∈ℛ𝑘𝑇𝑡𝑘

𝑇𝑑𝐸

⎡
⎣log

∣∣∣∣∣∣Φ+

𝑇𝑡𝑘∑
𝑖=1

𝜆𝑄
𝑘𝑖𝑓𝑘𝑖(𝑃𝑡𝑘)ẑ𝑘𝑖ẑ

†
𝑘𝑖

∣∣∣∣∣∣
⎤
⎦

(22)

In the optimization problem in (22), we have 𝑇𝑡𝑘 + 1 opti-
mization variables, 𝜆𝑄

𝑘1, . . . , 𝜆
𝑄
𝑇𝑡𝑘

, and 𝑃𝑡𝑘 . Unlike a similar
problem in [4], which does not take channel estimation prob-
lem into consideration, the problem here is not necessarily
convex due to the existence of 𝑃𝑡𝑘 . Equation (22) is concave
when 𝑇𝑡𝑘 = 1, which results in an affine 𝑓𝑘1(𝑃𝑡). Therefore, in
the most general case, the solution of the first order necessary
conditions will give a local maximum. The Lagrangian for the
optimization problem in (22) can be written as

𝑇 − 𝑇𝑡

𝑇
𝐸

⎡
⎣log

∣∣∣∣∣∣Φ+

𝑇𝑡𝑘∑
𝑖=1

𝜆𝑄
𝑘𝑖𝑓𝑘𝑖(𝑃𝑡𝑘)ẑ𝑘𝑖ẑ

†
𝑘𝑖

∣∣∣∣∣∣
⎤
⎦

− 𝜇𝑘

⎛
⎝
⎛
⎝𝑇𝑡𝑘∑

𝑖=1

𝜆𝑄
𝑘𝑖

⎞
⎠𝑇𝑑 + 𝑃𝑡𝑘𝑇𝑡𝑘 − 𝑃𝑘𝑇

⎞
⎠ .

(23)

where 𝜇𝑘 is the Lagrange multiplier, and we omitted the
complementary slackness conditions related to the positiveness

of 𝜆𝑄
𝑘𝑖, and 𝑃𝑡𝑘 −∑𝑇𝑡𝑘

𝑖=1

(
1

𝜆Σ
𝑇𝑡𝑘

− 1
𝜆Σ
𝑖

)
. The KKT conditions

can be written as
𝑇𝑑

𝑇
𝑓𝑘𝑖(𝑃𝑡𝑘)𝐸

[
z†𝑘𝑖B

−1z𝑘𝑖

]
≤𝜇𝑘𝑇𝑑, 𝑖=1, . . . , 𝑇𝑡𝑘

(24)

𝑇𝑑

𝑇

𝑇𝑡𝑘∑
𝑖=1

𝜆𝑄
𝑘𝑖𝐸

[
z†𝑘𝑖B

−1z𝑘𝑖

] ∂𝑓𝑘𝑖(𝑃𝑡𝑘)

∂𝑃𝑡𝑘

=𝜇𝑘𝑇𝑡𝑘 (25)

where B = Φ +
∑𝑇𝑡𝑘

𝑖=1 𝜆
𝑄
𝑘𝑖𝑓𝑘𝑖(𝑃𝑡𝑘 )ẑ𝑘𝑖ẑ

†
𝑘𝑖, and the equality

of the last equation again follows from the complementary
slackness condition. In order to derive a set of fixed point
equations to update the eigenvalues and the training power of
user 𝑘, we follow [2] closely to propose the following fixed
point algorithm that solves 𝑃𝑡𝑘(𝑛+ 1) from

𝑇𝑡𝑘∑
𝑖=1

𝜆𝑄
𝑘𝑖(𝑛)

𝑓 ′
𝑘𝑖(𝑃𝑡𝑘(𝑛+ 1))

𝑓𝑘𝑖(𝑃𝑡𝑘(𝑛+ 1))
=

𝑇𝑡𝑘

𝑇𝑑
(26)

then, updates 𝜆𝑄
𝑘𝑖(𝑛+ 1) using

𝜆𝑄
𝑘𝑖(𝑛+1)=

𝜆𝑄
𝑘𝑖(𝑛)𝑓𝑘𝑖(𝑃𝑡𝑘(𝑛+1))𝐸

[
z†𝑘𝑖B

−1z𝑘𝑖

]
∑𝑇𝑡𝑘

𝑗=1 𝜆
𝑄
𝑘𝑗(𝑛)𝑓𝑘𝑗(𝑃𝑡𝑘(𝑛+1))𝐸

[
z†𝑘𝑗B−1z𝑘𝑗

]𝑃𝑑.

(27)

where 𝑃𝑑 =
(𝑃𝑘𝑇−𝑃𝑡𝑘

(𝑛+1)𝑇𝑡𝑘
)

𝑇𝑑
. This algorithm finds the

solution of the inner optimization problem in (22) in terms
of the training power 𝑃𝑡𝑘 , and the eigenvalues of the transmit
covariance matrix 𝜆𝑄

𝑘1, . . . , 𝜆
𝑄
𝑘𝑇𝑡𝑘

of user 𝑘, when 𝑇𝑡𝑘 and
the parameters of the rest of the users are fixed. We run 𝑛𝑇

such algorithms simultaneously for user 𝑘. The solution of
(19) can be found by taking the one that results in the largest
rate, which gives us the value of 𝑇𝑡𝑘 that maximizes (19).
Now, we know the parameters 𝝀𝑄

𝑘 , 𝑃𝑡𝑘 , 𝑇𝑡𝑘 , that maximize
(19), when the parameters of the rest of the users are fixed.
We then move to another user, and perform the same inner
maximization for this user keeping the parameters of the rest
of the users fixed. In this manner we iterate over the users in
a round-robin fashion. Finally, round-robin algorithm gives us
the optimum parameters of all users that maximize (17).

As a result, we solved the joint channel estimation and re-
source allocation problem in a MIMO multiple access channel
with noisy channel estimation and partial CSI available at the
transmitter. For user 𝑘, through 𝑃𝑡𝑘 , we find the allocation of
available power over the training and data transmission phases.
Through 𝑇𝑡𝑘 , we find the portion of the training duration that
is allocated to user 𝑘, and through the sum of these portions
𝑇𝑡 =

∑𝐾
𝑘=1 𝑇𝑡𝑘 , we find the allocation of available time over

the training and data transmission phases. Through Theorem
2, we find the transmit directions of user 𝑘, and through
𝜆𝑄
𝑘1, . . . , 𝜆

𝑄
𝑇𝑡𝑘

, we find the allocation of data transmission
power of user 𝑘 over these transmit directions. Finally, the
training signal of user 𝑘, S𝑘, is determined by 𝑇𝑡𝑘 and 𝑃𝑡𝑘

through Theorem 1.

C. Numerical Analysis

Analytical proof of the convergence of this algorithm seems
to be more complicated than the proof in the case when there
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Fig. 1. The convergence of the single-user algorithm with 𝑛𝑇 = 𝑛𝑅 = 2,
10 dB total average power and 𝑇 = 4. The dashed curves correspond to one
symbol long training, 𝑇𝑡 = 1, and solid curves correspond to two symbols
long training, 𝑇𝑡 = 2.

is no channel estimation error [4], and seems to be intractable
for now. Moreover, other than the case when 𝑇𝑡 = 1, the
algorithm is not guaranteed to achieve the global optimum.
However, in our extensive simulations, we observed that the
algorithm always converges.

We start our numerical analysis with the single-user case of
Part I [2] of this two-part paper. We first consider a system
having 𝑛𝑇 = 𝑛𝑅 = 2 with 10 dB total average SNR and
block length 𝑇 = 4. In Figure 1, we plot the eigenvalues of
the data transmit matrix and the training power as a function
of the iteration index for both possible values of the training
signal duration3. We observe that when the training duration
is one symbol period, we achieve a higher rate. Therefore,
for this set of given system parameters, estimating only one
dimension of the channel is optimum.

Next, we investigate the effect of total average power on
the number of estimated channel dimensions. We observe that
if we keep the block length small at 𝑇 = 4, the amount of
total power required in order to estimate the second channel
dimension is very high. In Figure 2, for a 40 dB total average
power, we plot the eigenvalues of the data transmit matrix
and the training power as a function of the iteration index for
both possible values of the training signal duration, and we
see that achievable rate with two symbols of training is barely
higher than the achievable rate with one symbol of training.
We repeat this experiment with different numbers of antennas
and channel eigenvalues, and we see that we need very high
power levels in order to use more than one symbol of training.
This suggests that the block length, i.e., the coherence interval,

3Our algorithm is proposed to maximize a lower bound to the capacity. By
generalizing the results of [7] to transmit-side correlated channel fading, it is
possible to derive an upper bound to the capacity as well. As in the case of
[7], the difference between the upper and the lower bounds can be found in
a closed form expression. In Figure 1, + . . . bits/symbol, i.e., the expression
under the achievable rate, denotes this difference between the upper and the
lower bounds. We will use this notation in some of the other figures as well,
specifically in Figures 1-5. We observe from these figures that our achievable
rate scheme is very close to the upper bound, especially when the block length
is larger. We also note that the difference does not depend on the SNR when
the block length is short.
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is more important for determining the duration of the training
phase.

In order to investigate the effect of the block length, in
Figure 3, we consider 10 dB total average power, and block
length 𝑇 = 20. We observe that similar to the high SNR
case, in this case as well, having two symbols long training
phase is optimum. We repeat this experiment with different
numbers of antennas, and channel eigenvalues for long block
lengths, and we see that moderate block lengths are sufficient
in order to use more than one symbol of training. Therefore,
we conclude that for very fast changing channels where the
coherence interval and therefore the block length is short, and
for low SNR systems, estimating only one dimension of the
channel results in higher achievable rates. In this case, we
cannot take advantage of the multiple dimensions that the
MIMO channel provides, because the amount of time required
to estimate those channels cancels the data rate advantage
brought by having multiple channels.
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Fig. 4. The convergence of the single-user algorithm with 𝑛𝑇 = 𝑛𝑅 = 2,
10 dB total average power, and channel eigenvalues 𝝀Σ = [2, 0.2], where
dashed curves correspond to one symbol long training, 𝑇𝑡 = 1, and solid
curves correspond to two symbols long training, 𝑇𝑡 = 2: (a) 𝑇 = 4; (b)
𝑇 = 20.

The trade-off between estimating the channel better and
increasing the data rate can also be seen from Figures 1-3. We
see in Figure 1 that when we increase the training duration to
two symbols, time remaining for data transmission becomes
very short, and therefore the data rate decreases. On the other
hand, in Figure 3, when the training duration is increased to
two symbols, there is still enough time for increasing the rate
of the data transmission. Therefore, increasing the training
duration is not always helpful. The result crucially depends
on the total block length, available SNR and the number of
antennas in the system.

We next analyze the effects of different channel covariance
matrices. In Figure 4, we consider 10 dB average power, and
a channel covariance matrix that has a first eigen-direction
much stronger than the second eigen-direction, i.e., the largest
eigenvalue of the channel covariance matrix is much larger
than the second largest eigenvalue. In such scenarios, even
if the block length is large, beamforming turns out to be
the optimal strategy for the data transmission period [5], [9].
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Fig. 5. The convergence of the single-user algorithm with 𝑛𝑇 = 𝑛𝑅 = 2,
10 dB total average power, and channel eigenvalues 𝝀Σ = [1, 1], where
dashed curves correspond to one symbol long training, 𝑇𝑡 = 1, and solid
curves correspond to two symbols long training, 𝑇𝑡 = 2: (a) 𝑇 = 4; (b)
𝑇 = 20.

Therefore, estimating the second dimension is a waste of
resources, because no power will be allocated to that direction
in the data transmission phase. Confirming this intuition, in
Figure 4, for the cases when 𝑇𝑡 = 2, the power allocated to
the second eigen-direction is zero, although the training power
is large enough to estimate both channels.

Another extreme for the eigenvalues of the channel covari-
ance matrix is the case when both eigenvalues are equal. Note
that this case is exactly the case considered [8]. However, in
this paper, we do not assume the restriction that 𝑇𝑡 ≥ 𝑛𝑇 as
it was assumed in [8] by reasoning that one needs at least
𝑇𝑡 ≥ 𝑛𝑇 measurements in order to estimate 𝑛𝑇 variables.
Although this reasoning is valid, we relax this restriction by
pointing out that in some cases, we might not want to estimate
𝑛𝑇 variables. If the resources are limited, estimating some of
the variables and saving the resources for data transmission is
more useful. As a result, in this paper, we find that the duration
of the training signal is equal to the number of variables to be
estimated rather than the total number of variables. Figure 5
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Fig. 6. The performance improvement of our algorithm compared to [8]. The
color change from blue to red indicates that the number of spatial dimensions
to be estimated is increased from one to two.

supports our findings, by showing that, for a short block length
𝑇 = 4 with 10 dB total power, not estimating one of the
dimensions results in a higher data transmission rate. This
advantage disappears when the block length is long enough.
In order to see the performance improvement of our algorithm
compared to [8], we plot the rates achieved by our algorithm
and by [8] with respect to the SNR. In Figure 6, we see that
especially at longer block lengths, there is a non-vanishing
rate difference between our algorithm and allocating power
equally over the spatial dimensions.

In a MIMO-MAC case, proving the convergence of our
algorithm becomes even harder. However, again, we observed
through extensive simulations that the proposed algorithm
always converges. In Figure 7, we considered a system of
𝐾 = 3 users with 𝑛𝑇 = 𝑛𝑅 = 3, all having moderate
power, 𝑃 = 20 dB, and moderate block length, 𝑇 = 10. Each
iteration in Figure 7, corresponds to solving (19) for one of the
users, while the parameters of the rest of the users are fixed.
Although we observe in Part I [2, Figures 2-4] that in the
same system with a single user, it is optimal to estimate two
dimensions of the channel, in this multi-user case, we observe
in Figure 7 that, all users estimate only one dimension of the
channel.

We observed through extensive simulations that for a large
set of channel eigenvalues, total available power and the block
length, all users estimate only one dimension of the channel.
In order to estimate a second dimension, either very large
levels of power or a long enough coherence time is needed.
For example, we see in Figure 8 that, for a 3-user system,
one of the users start estimating the second dimension, when
𝑇 gets large enough, i.e., when 𝑇 = 50. When the number
of users increases, total number of channels estimated by all
users also increases, since each user has to spend its power.

In order to verify that our algorithm also converges with
larger numbers of users and with uneven number of antennas
on users, we analyze a case with 𝐾 = 10, and 𝑇 = 50. In
Figure 9, half of the users have two transmit antennas, and the
other half have three transmit antennas. In this case as well,
we observed the convergence of our algorithm, and the highest

1 2 3 4 5 6 7 8 9 
0

50

100

150

200

250

300

user iteration index

po
w

er
 v

al
ue

s 
of

 u
se

r 
1

n
T
 = 3, P

1
 = 20 dB, T = 10, λ

1
Σ = [2 1.5 0.8]

 

 

P
t1

λ
11
Q

λ
12
Q

λ
13
Q

(a)

1 2 3 4 5 6 7 8 9
0

50

100

150

200

250

300

user iteration index

po
w

er
 v

al
ue

s 
of

 u
se

r 
2

n
T
 = 3, P

2
 = 20 dB, T = 10, λ

2
Σ = [2.5 1.7 1]

 

 

P
t
2

λ
21
Q

λ
22
Q

λ
23
Q

(b)

Fig. 7. The convergence of the multi-user algorithm with 𝑛𝑇 = 𝑛𝑅 = 3,
20 dB total average power and 𝑇 = 10: (a) convergence of user 1; (b)
convergence of user 2; convergence of user 3 is similar and omitted here due
to space limitations.

achievable sum rate is obtained when each user estimated only
one dimension of its channel. In Figure 9, we plot the power
values of the first user. The algorithm goes over the users five
times in a round-robin fashion, and for each user it performs
ten iterations.

IV. CONCLUSIONS

We considered a block-fading MIMO multiple access chan-
nel, where the receiver has a noisy estimate of the channel and
the transmitters have the partial CSI in the form of covariance
feedback. Each transmission block is divided into a training
phase and a data transmission phase. During the training
phase, we showed that the users send time-orthogonal training
signals. During the data transmission phase, we formulated
an optimization problem that maximizes the achievable sum-
rate jointly over the training signal durations of all users,
the training powers of all users, and the transmit covariance
matrices of all users. The proposed multi-user algorithm solves
the problem iteratively over the users in a round-robin fashion,
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while utilizing a single-user algorithm similar to the one
proposed in Part I, for an update of each user. Although
theoretical convergence proofs of these algorithms remain as
open problems, through extensive simulations, we observed
that both the single-user algorithm of Part I and the multi-
user algorithm of Part II converge, and they converge to the
same point regardless of the initial point of the iterations.
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He joined Bahçeşehir University, Istanbul, Turkey
in February 2008 as an Assistant Professor in the
Department of Electrical and Electronics Engineer-
ing. His research interests are in wireless com-
munication theory, information theory and signal

processing for wireless communications with particular focus on MIMO
networks.

Sennur Ulukus received the B.S. and M.S. de-
grees in electrical and electronics engineering from
Bilkent University, Ankara, Turkey, in 1991 and
1993, respectively, and the Ph.D. degree in electrical
and computer engineering from Rutgers University,
NJ, in 1998.

During her Ph.D. studies, she was with the Wire-
less Information Network Laboratory (WINLAB),
Rutgers University. From 1998 to 2001, she was
a Senior Technical Staff Member at AT&T Labs-
Research in NJ. In 2001, she joined the University of

Maryland at College Park, where she is currently an Associate Professor in the
Department of Electrical and Computer Engineering, with a joint appointment
at the Institute for Systems Research (ISR). Her research interests are in
wireless communication theory and networking, network information theory
for wireless networks, signal processing for wireless communications and
security for multi-user wireless communications.

Sennur Ulukus is a recipient of the 2005 NSF CAREER Award, and a co-
recipient of the 2003 IEEE Marconi Prize Paper Award in Wireless Commu-
nications. She serves/served as an Associate Editor for the IEEE Transactions
on Information Theory since 2007, as an Associate Editor for the IEEE
TRANSACTIONS ON COMMUNICATIONS between 2003-2007, as a Guest
Editor for the IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS
in 2006-2008, as the co-chair of the Communication Theory Symposium
at the 2007 IEEE Global Telecommunications Conference, as the co-chair
of the Medium Access Control (MAC) Track at the 2008 IEEE Wireless
Communications and Networking Conference, as the co-chair of the Wireless
Communications Symposium at the 2010 IEEE International Conference on
Communications, and as the Secretary of the IEEE Communication Theory
Technical Committee (CTTC) in 2007-2009.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on October 02,2022 at 02:21:42 UTC from IEEE Xplore.  Restrictions apply. 


