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Abstract— We consider the average age of information in
G/G/1/1 systems under two service discipline models. In the
first model, if a new update arrives when the service is busy,
it is blocked; in the second model, a new update preempts the
current update in service. For the blocking model, we first derive
an exact age expression for G/G/1/1 systems. Then, using the
age expression for G/G/1/1 systems, we calculate average age
expressions for special cases, i.e., M/G/1/1 and G/M/1/1 systems.
We observe that deterministic interarrivals minimize the average
age of G/M/1/1 systems for a given mean interarrival time. Next,
for the preemption in service model, we first derive an exact
average age expression for G/G/1/1 systems. Then, similar to
blocking discipline, using the age expression for G/G/1/1 sys-
tems, we calculate average age expressions for special cases,
i.e., M/G/1/1 and G/M/1/1 systems. Average age for G/M/1/1 can
be written as a summation of two terms, the first of which
depends only on the first and second moments of interarrival
times and the second of which depends only on the service rate.
In other words, interarrival and service times are decoupled.
We prove that deterministic interarrivals are optimum for
G/M/1/1 systems for a given mean interarrival time. On the
other hand, we observe for non-exponential service times that the
optimal distribution of interarrival times depends on the relative
values of the mean interarrival time and the mean service time.
Finally, we propose a simple to calculate upper bound to the
average age for the preemption in service discipline.

Index Terms— Age of information, G/G/1/1 systems, blocking
discipline, preemption in service discipline.

I. INTRODUCTION

NO MATTER how important information might be, there
is a duration of time after which information loses its

freshness. Especially in today’s immensely interactive world,
information ages fast. Hence, in recent years, researchers have
begun to consider the age of information (AoI). Age of a status
update, Δ(t) = t−u(t), is a random process which is defined
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as the difference between current time, t, and the time-stamped
value of the most recently received update, u(t). The AoI is
defined as the average Δ(t) and given as [2]

Δ = lim
T→∞

1
T

� T

0

Δ(t)dt. (1)

This definition is sufficiently broad to cover almost all
communication scenarios. However, most of the AoI literature
so far has considered queueing systems with Poisson arrival
processes, mostly due to their mathematical tractability. On the
other hand, Poisson arrivals (hence exponential interarrival
times) might not correctly model the periodic and asynchro-
nous nature of packet arrivals in certain wireless network
applications [3], [4]. In this paper, we analyze AoI for general
queueing distributions that might be observed in real world
communication scenarios.

The first papers that consider the AoI in a communication
setting are [5], [6], and [7]. The authors in [5] assume First
Come First Served (FCFS) systems and calculates the average
age expressions for M/M/1, M/D/1 and D/M/1 queues, [6]
assumes Last Come First Served (LCFS) systems with and
without preemption and calculates the average age expression
for M/M/1 queues, [7] assumes multi-source FCFS systems
with M/M/1 queues, and [2] provides a more detailed analy-
sis. Starting with these works, there has been a growing
interest in AoI analysis. For example, [8] considers a packet
management approach for M/M/1/1 and M/M/1/2 queues, [9]
calculates the average age for exponential interarrival and
gamma service times, and [10] calculates the average age
for an M/G/1/1 queue and finds the optimum arrival rate to
minimize age. For exponential service times, preemption in
service discipline is found to be optimal in [11] over all service
disciplines.

Although they derive age expressions and propose age-
minimum strategies, the main facilitator in the analyses of
[2], [5]–[11] is the memoryless property of exponential inter-
arrival times and/or exponential service times. Since arrival
processes are not necessarily Poisson in a real world wireless
network, some of these results do not hold in general. In this
paper, we show examples of previous results that do not
generalize to arbitrary interarrival and service time distribu-
tions. Such a general approach is also taken in [12], [13],
where the focus is on the distribution of age rather than the
average age that we consider in this paper. On the other
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hand, [14] calculates the peak and average age of FCFS and
LCFS G/G/1 queues with preemption in service discipline.
In the case of LCFS with preemption in service discipline,
the main result is in the form of a lower bound to the
average age that does not reflect the effect of service time
distribution.

While the literature on calculating age expressions for
different queueing models expands, another line of research
considers age minimization for energy constrained systems,
i.e., energy harvesting problems. The goal is to find the
optimum update generation policy that minimizes age, given
the service time distribution and an energy constraint. In [15],
the authors show the existence of an optimal stationary
deterministic update generation policy when the service time
process is a stationary and ergodic Markov chain. Age mini-
mization for offline energy harvesting problems is considered
in [16]–[18], and age minimization for online energy harvest-
ing problems is considered in [19]–[22]. A recent survey paper
provides a very detailed literature review on AoI [23].

The derivation of AoI for a given queue model requires a
probabilistic approach in order to calculate the expected values
of several, possibly correlated, random quantities specific to
that model. The more complex the system is, the harder it is to
calculate the expected values, especially when the interarrival
times are not exponential. To overcome this, [2] proposes an
approach based on stochastic hybrid systems (SHS). In this
paper, we follow an alternative path to SHS in order to analyze
general cases.

In this paper, our goal is to analyze AoI for general inter-
arrival and service time distributions. Using queueing theory
terminology, our model corresponds to a G/G/1/1 system.
An example of such a G/G/1/1 system appears in the multicast
problem of [24], where a new update is generated when a
percentage of the destinations has received the current update,
and service time to each destination is a shifted exponen-
tial random variable. Although an exact expression for their
model is derived in [24], in general, calculating an exact age
expression for non-exponential interarrival times is difficult.
For example, [25] considers a two-stage multicast extension
of [24], where only an upper bound is derived for the age
of the second stage nodes. In this paper, we derive exact age
expressions when the distribution of service times is arbitrary
but known.

We consider two service disciplines. The first one is called
G/G/1/1 with blocking, where a new arrival is blocked if
the server is busy. This server model is memory efficient
and a good choice when the server does not have a buffer.
It is also used in [8] for an M/M/1/1 system and in [10]
for an M/G/1/1 system. Here, we do not restrict ourselves
to exponential interarrival times or exponential service times.
Our first contribution is to derive an exact expression for
average age in a G/G/1/1 system. This expression can be
calculated using probability density functions of interarrival
and service times. Next, we calculate average age expressions
for M/G/1/1 and G/M/1/1 systems. Age for M/G/1/1 systems
is previously derived in [10]; in this paper, we provide an
alternative proof using our approach. On the other hand,
average age for G/M/1/1 systems is a new contribution.

Fig. 1. Arrival and departure structure for a server. The arrows above and
below the horizontal timeline corresponds to arrivals to and departures from
the server. Circles are successful arrivals, while crosses are discarded arrivals:
(a) blocking discipline, (b) preemption in service discipline.

For G/M/1/1 systems, we observe that deterministic interar-
rival times minimize the average age for a given exponential
service time.

Our second service discipline model is called G/G/1/1
with preemption in service, where a new arrival preempts
any ongoing service. This model is used in [5] and [2] for
an M/M/1/1 system and in [10] for an M/G/1/1 system.
Here, in this model as well, we do not restrict ourselves to
exponential interarrival times or exponential service times.
Our first contribution in this service discipline is to derive
an exact expression for average age in a G/G/1/1 system.
Unlike the case with blocking discipline, the average age
in this model does not include any calculation of infinite
sums. The age expression can be calculated relatively easily
using probability density functions of interarrival and ser-
vice times. Next, we calculate average age expressions for
M/G/1/1 and G/M/1/1 systems. Age for M/G/1/1 systems
is previously derived in [10]; in this paper, we provide an
alternative proof using our approach. On the other hand,
age for G/M/1/1 systems is a new contribution. Moreover,
we prove that in a G/M/1/1 system deterministic interarrivals
are optimum. We observe for non-exponential service times
that the optimal distribution of interarrival times depend on
the relative values of the mean interarrival time and the mean
service time. Finally, we propose a simple upper bound to
the average age, which does not have any restrictions on the
distributions of interarrival and service times.

II. SYSTEM MODEL

We consider a communication scenario where the data arrive
at the source according to an arrival process with indepen-
dent and identically distributed (i.i.d.) interarrival times Yn.
The source transmits the data through a single bufferless
server. Time duration of service is modeled as a random
process with i.i.d. service times Sn. Interarrival times, Yn,
and service times, Sn, are independent. We specify general
probability distributions for the interarrival times and ser-
vice times. Fig. 1(a) and Fig. 1(b) show realizations of the
arrival/departure processes with blocking and preemption in
service disciplines, respectively.
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A. Blocking Discipline

In this model, if an update arrives while the server is busy,
it is blocked (see cross marked arrows in Fig. 1(a)). If an
update arrives while the server is idle, service is initiated
immediately (see circle marked arrows in Fig. 1(a)). We refer
to those updates that initiate a service as the successful
updates. After a service, Sn, is completed, a successful
update departs the server (see the arrow below the timeline
in Fig. 1(a)). Service idle time, Wn, is the time between
a departure of a successful update and the arrival of the
next update. Interarrival times between consecutive successful
updates, Gn = Sn+Wn, are called effective interarrival times.
It is important to note that, the effective interarrival time,
Gn, can be written as a random sum of random numbers,
Gn =

�K
k=1 Yk,n. Note that n is the index successful updates,

k is the index of arrivals between two consecutive successful
updates and K is an integer random variable that describes
the total number of arrivals before the next successful arrival.
Probability mass function of K can be written as

Pr(K = k) = Pr

⎛
⎝k−1�

j=1

Yj,n ≤ Sn <
k�

j=1

Yj,n

⎞
⎠ . (2)

B. Preemption in Service Discipline

In this model, if an update arrives while the server is idle,
the service is initiated immediately. If an update arrives while
the server is busy, the packet being served is terminated and
the new packet is pushed to the server. In Fig. 1(b), each arrival
(arrows above the timeline) starts a service. An arrival that can
finish service is called a successful arrival (see circle marked
arrows in Fig. 1(b)). Since the service time of a successful
arrival needs to be smaller than the interarrival time, the time
that a successful arrival stays in service is S̃n = Sn|Sn < Y1,n.

Similar to the blocking model, interarrival times between
successful updates are called effective interarrival times, Gn,
which can be written as a random sum of random numbers,
Gn =

�K
k=1 Yk,n. Unlike the blocking model, here the waiting

time depends only on the current interarrival time, Wn =
Y1,n − S̃n. Although K in the blocking discipline does not
follow a specific distribution, K in the preemption in service
discipline is a geometric random variable. An effective inter-
arrival time is the sum of a successful arrival with probability
p = Pr(Y1,n > Sn), and K − 1 unsuccessful arrivals, all with
the same probability 1 − p.

III. G/G/1/1 WITH BLOCKING

For a stationary ergodic status update system, the average
age can be calculated using a geometric approach [2, The-
orem 3]. For G/G/1/1 with blocking discipline, average age
can be written as the difference of the areas of two triangles,
divided by the expected value of the effective interarrival time.
From Fig. 2, we have

Δb
G/G =

E[(Gn + Sn+1)2] − E[(Sn+1)2]
2E[Gn]

(3)

=
E[G2]
2E[G]

+ E[S], (4)

Fig. 2. Age curves for G/G/1/1 with blocking model.

where superscript b denotes blocking, Sn+1 is independent of
Gn, and time indices are dropped. Next, we make a general
remark about (4). The effective interarrival time, G, is the time
of the renewal cycle of a renewal process. We see from Fig. 2
that each time a service starts, the effective interarrival process
is renewed. In [26, page 136], average age of a renewal
process is defined, and is calculated as E[G2]

2E[G] . Therefore,
the average age of an information update in (4) is equal to
the sum of the average age of the effective interarrival process
and the average service time.

For most general interarrival and service time models, it is
not easy to calculate the first and second moments of effective
interarrival times G needed in (4). In this section, we first
derive an exact expression for (4) that depends only on the
general distributions of interarrival times, Y , and service
times, S. Although it is exact, the average age expression for
the case of general interarrival and service time distributions
require further calculations on the distribution functions of the
interarrival and service times. Next, we derive simpler average
age expressions for several special cases, i.e., for general
interarrival and exponential service times, and exponential
interarrival and general service times.

A. Age for General Interarrival and Service Times

In this section, we derive an exact age expression for the
case of general interarrival and service time distributions under
blocking discipline. An important aspect of this result is that
the average age of an information update can be written
in terms of the average age of the update arrival process,
E[Y 2]
2E[Y ] , instead of the average age of the effective interarrival

process, E[G2]
2E[G] .

Theorem 1: Consider a G/G/1/1 system with blocking
discipline, where Yn are i.i.d. interarrival times with a general
distribution and Sn are i.i.d. service times with a general
distribution. The average age of an information update in this
system is

Δb
G/G =

E[Y 2]
2E[Y ]

+
�∞

k=1 E[AkF̄S(Ak)]
1 +

�∞
k=1 E[F̄S(Ak)]

+ E[S] (5)
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Fig. 3. AoI for G/G/1/1 with blocking discipline, where the x-axis is the number of summations that are calculated in (5) for different expected service
times: (a) αS = αY = 2, μ = 2, λ = 1, (b) αS = αY = 2, μ = λ = 2, (c) αS = αY = 2, μ = 0.4, λ = 2.

where Ak =
�k

j=1 Yj , and F̄S(·) is the complementary cdf
of S.

The proof of Theorem 1 is given in Section V-A. Note that
Theorem 1 gives the average age of a G/G/1/1 system as a
summation of three terms. The first and the third terms depend
only on the interarrival and service time distributions, respec-
tively, and the second term depends on both distributions.

The exact average age expression in (5) requires calculations
of infinite sums. In Fig. 3, we consider gamma distributed1

interarrival and service times and observe that the number of
terms needed in the summation for calculation to converge
depends on the ratio of the expected service time, E[S],
to the expected interarrival time, E[Y ]. When E[S] = E[Y ],
we observe from Fig. 3(b) that the error in calculation is
less than 0.5% after 5 terms in the summation. In Fig. 4,
we consider gamma distributed interarrival times where αY is
the shape parameter and λ is the rate parameter, and gamma
distributed service times where αS is the shape parameter
and μ is the rate parameter. Using simulations to calculate
the average age, we observe the effects of the rate and
shape parameters of gamma distribution on the average age.
We observe that the age decreases monotonically with the
rate parameter and increases monotonically with the shape
parameter of either distribution.

B. Age for General Interarrival and Exponential
Service Times

For exponential service times, we have a closed form
expression for the average age. First, we show that for

1We choose gamma distribution in this paper in order to simulate general
distributions. The gamma distribution forms a two-parameter exponential
family. When the shape parameter of a gamma distribution is larger than one,
it is log-concave; when the shape parameter is smaller than one, it is log-
convex. The gamma distribution includes the chi-squared, Erlang, and expo-
nential distributions as special cases. Probability density function of a gamma
distribution has a flexible shape so that it can be used to approximate many
probabilistic models. Log-concave distributions have important implications
for age analysis. Let us consider a random variable that corresponds to the age
of a device. If the random variable has a log-concave distribution, then it has
an increasing probability of failure in the next instant of time, as the device
ages [27]. In other words, random variables with log-concave distributions
“wear out”. As it happens, many common probability distributions that
appear in arrival processes in real-world systems are log-concave, including
exponential, Rayleigh, Erlang, gamma with shape parameter larger than one,
and uniform distributions [27].

Fig. 4. AoI for G/G/1/1 with blocking discipline, where both the interarrival
and service times are gamma distributed, (a) αY = μ = 2, (b) λ = μ = 2.

exponentially distributed service times with rate parameter μ,
K is a geometric random variable with p = 1 − E[e−μY ].

Lemma 1: Consider a G/M/1/1 system with blocking dis-
cipline, where Yn are i.i.d. interarrival times with a general
distribution, Sn are i.i.d. service times with an exponential
distribution with rate parameter μ, and Kn are i.i.d. discrete
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random variables with

Pr(K = k) = Pr

⎛
⎝k−1�

j=1

Yj ≤ S <

k�
j=1

Yj

⎞
⎠ . (6)

Then, K is geometric with p = 1 − E[e−μY ].
The proof of Lemma 1 is given in Section V-B. Using this

lemma, in the next theorem, we derive the average age of a
G/M/1/1 system for a given distribution for the interarrival
times.

Theorem 2: Consider a G/M/1/1 system with blocking
discipline, where Yn are i.i.d. interarrival times with a general
distribution and Sn are i.i.d. service times with an exponential
distribution with rate parameter μ. The average age of this
system is

Δb
G/M =

E[Y 2]
2E[Y ]

+
E[Y e−μY ]

1 − E[e−μY ]
+

1
μ

. (7)

The proof of Theorem 2 is given in Section V-C. Note that
similar to Theorem 1 in G/G/1/1 case, Theorem 2 gives the
average age of a G/M/1/1 system as a summation of three
terms. The first and the third terms depend only on the
interarrival and service time distributions, respectively, and
the second term depends on both distributions (note the second
term has μ in it even though the expectation is with respect
to Y ). Unlike the G/G/1/1 case, the middle term in the
average age of a G/M/1/1 system in (7) does not contain any
summations. Therefore, the average age of a G/M/1/1 system
can be calculated rather easily given the distribution of inter-
arrival times. For example, when the interarrival times are also
exponential with rate parameter λ, (7) reduces to

Δb
M/M =

1
λ

+
2
μ
− 1

λ + μ
(8)

which is the age of an M/M/1/1 queue that is found in [8].
In the next corollary, we propose an equivalent average

age expression for a G/M/1/1 system with blocking discipline
given in Theorem 2.

Corollary 1: The average age in Theorem 2 can be written
equivalently as

Δb
G/M =

E[Y 2]
2E[Y ]

+ 2E[S] − E[S|S < Y ]. (9)

The proof of Corollary 1 is given in Section V-D. When
Y is exponential, this corollary directly gives the average age
of an M/M/1/1 system, since the random variable S|S < Y
is exponential with rate parameter λ + μ when Y and S are
exponential with parameters λ and μ, respectively. However,
we observe that calculating the average age for a general Y
using Theorem 2 is easier.

In Fig. 5, we consider gamma distributed interarrival times
where αY is the shape parameter and λ is the rate parameter,
and exponential service times where μ is the rate parameter.
In Fig. 5(a), we plot the average age with respect to λ when
αY and μ are fixed, and in Fig. 5(b), we plot the average
age with respect to μ when αY and λ are fixed. We observe
that the age decreases with both rate parameters. Fig. 5(a)
shows that smaller αY results in a lower age. In addition, for
a fixed mean interarrival time ( αY

λ ), average age is smaller

Fig. 5. AoI for G/M/1/1 with blocking discipline (a) with respect to λ when
μ = 2 and for several αY , (b) with respect to μ for several (αY , λ) pairs.

for a smaller interarrival time variance. Similarly, for a fixed
interarrival time variance ( αY

λ2 ), average age is smaller for a
smaller mean interarrival time. We see from Fig. 5(b) that the
lowest age is achieved when the mean interarrival time is the
smallest.

At this point, it is natural to ask what the age minimizing
interarrival time distribution is for a G/M/1/1 system with a
given mean interarrival time. The first term on the right hand
side of (7) suggests that a distribution with the smallest second
moment, which belongs to a deterministic random variable,
would minimize the age. However, the effect of the middle
term on the right hand side of (7) is not immediately clear.
In Fig. 6, we plot (7) for several distributions. We observe
that deterministic interarrivals result in the minimum age for a
given mean expected interarrival time. In addition, we observe
that exponential interarrivals are the worst among log-concave
distributions in terms of the resulting age. Note that gamma
distributions with α < 1 are not log-concave.

C. Age for Exponential Interarrival and General
Service Times

In this section, we consider exponential interarrival and
general service times, i.e., an M/G/1/1 system, with blocking
discipline. This system is considered in [10] as well. Let us
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Fig. 6. AoI for G/M/1/1 with blocking discipline with respect to mean
interarrival time for several interarrival distributions.

give the outline of the derivation in [10] starting from (4). Note
that when interarrivals are exponential, the waiting time after a
service is completed is also exponential. Therefore G = Y +S.
Then, using the independence of Y and S, we have

Δb
M/G =

E[(Y + S)2]
2(E[Y ] + E[S])

+ E[S] (10)

=
2

λ2 + 4E[S]
λ + 2E2[S] + E[S2]
2( 1

λ + E[S])
(11)

=
1
λ

+
λE[S2]

2(1 + λE[S])
+ E[S] (12)

where E[Y ] = 1
λ and E[Y 2] = 2

λ2 . In Theorem 3 below,
we provide an alternative proof to (12) that calculates the age
expression in Theorem 1 for an exponential Y . Although this
is a replication of a previous result, Theorem 3 shows how our
general G/G/1/1 result in Theorem 1 can be used for specific
cases.

Theorem 3: Consider an M/G/1/1 system with blocking
discipline, where Yn are i.i.d. exponential interarrival times
with rate parameter λ and Sn are i.i.d. service times with a
general distribution. The average age of this system is

Δb
M/G =

1
λ

+
λE[S2]

2 (1 + λE[S])
+ E[S]. (13)

The proof of Theorem 3 is given in Section V-E. We refer
the reader to [10] for further analysis of M/G/1/1 systems.

IV. G/G/1/1 WITH PREEMPTION IN SERVICE

Similar to the case with blocking discipline, for
G/G/1/1 with preemption in service discipline as well, average
age can be written as the difference of the areas of two
triangles, divided by the expected length of the effective
interarrival time [2, Theorem 3]. From Fig. 7, we have

Δp
G/G =

E[(Gn + S̃n+1)2] − E[(S̃n+1)2]
2E[Gn]

(14)

=
E[G2]
2E[G]

+ E[S̃] (15)

Fig. 7. Age curves for G/G/1/1 with preemption in service.

where superscript p denotes preemption, S̃n+1 = {S|
S < Y }n+1 is independent of Gn, and time indices are
dropped.

It is important to note that the random variable G in this
model is not the same as the G in the blocking model. The
difference can be observed from Figs. 2 and 7 by noting the
change in scale for Sn. However, G represents the effective
interarrival time and E[G2]

2E[G] represents the average age of
effective interarrival process [26, page 136] in this model as
well. Therefore, the average age of an information update in
(15) is the sum of the average age of the effective interarrival
process and the amount of time update spends in service,
which is different than the mean service time of the server.

In this section, we first derive an exact closed form expres-
sion for (15) that depends only on the general distributions
of interarrival times, Y , and service times, S. Unlike the
age expression in the blocking model, the age expression
in the preemption in service model does not require further
calculations. Next, we derive simpler average age expressions
for special cases, i.e., for general interarrival and exponential
service times, and exponential interarrival and general service
times. Finally, we derive an upper bound for the case of general
interarrival and service time distributions.

A. Age for General Interarrival and Service Times

In this section, we derive an exact age expression for the
case of general interarrival and service time distributions under
the preemption in service discipline. An important aspect of
this result is that, unlike the case with blocking discipline,
the average age of an information update in this model does
not involve any infinite sums. In addition, similar to the case
with blocking discipline, the average age of an information
update can be written in terms of the average age of the
update arrival process, E[Y 2]

2E[Y ] , instead of the average age of

the effective interarrival process, E[G2]
2E[G] .

Theorem 4: Consider a G/G/1/1 system with preemption in
service discipline, where Yn are i.i.d. interarrival times with
a general distribution and Sn are i.i.d. service times with a
general distribution. The average age of an information update
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Fig. 8. AoI for G/G/1/1 with preemption in service discipline, where both
the interarrival and service times are gamma distributed, (a) αY = μ = 2,
(b) λ = μ = 2.

in this system is

Δp
G/G =

E[Y 2]
2E[Y ]

+
E[Y F̄S(Y )]

1 − E[F̄S(Y )]
+ E[S̃] (16)

where F̄S(·) is the complementary cdf of S, and S̃ =S|S < Y .
The proof of Theorem 4 is given in Section V-F.2 Similar to

Theorem 1 in the case of blocking discipline, Theorem 4 in the
case of preemption in service discipline gives the average age
of a G/G/1/1 system as a summation of three terms. However,
unlike Theorem 1 which includes infinite sums, Theorem 4 is
much easier to calculate given the distributions of interarrival
and service times.

In Fig. 8, we consider gamma distributed interarrival times
where αY is the shape parameter and λ is the rate parameter,
and gamma distributed service times where αS is the shape
parameter and μ is the rate parameter. Using simulations to
calculate the average age, we observe the effects of the rate and
shape parameters of gamma distribution on the average age.

2A similar and independent result is also given in [14] for the average age
of LCFS G/G/1 queues with preemption in service discipline. Our expression
in Theorem 4 and the expression in [14] can be converted to each other using
some probabilistic identities.

Fig. 9. AoI for G/G/1/1 with preemption in service discipline with respect
to mean interarrival time for several interarrival distributions.

We have seen from Fig. 4 through Fig. 6 that the age in the
blocking discipline is monotone with respect to the parameters
of the gamma distribution. We observe from Fig. 8 that
this is not the case in the preemption in service discipline.
When λ is very large, in other words when the interarrivals
are too frequent, preemption starts to overload the system
when service time distribution is log-concave, i.e., αS > 1.
Time duration between two successive successful interarrivals
gets larger, and hence age increases. This observation for
G/G/1/1 systems with preemption in service differs signif-
icantly from M/M/1/1 systems with preemption in service,
where age is monotonically decreasing in λ [2] (see also the
unmarked curves in Fig. 8(a)). In addition, the minimum age
for G/G/1/1 systems over the rate parameter is smaller in
the blocking scenario than it is in the preemption in service
scenario. However, we know from [2] and [8] that the opposite
is true for M/M/1/1 systems (see also the unmarked curves
in Figs. 4(a) and 8(a)). These observations reassure our initial
motivation to consider the AoI for G/G/1/1 systems, as they
can behave significantly different than M/M/1/1 systems.

In Fig. 9(a), we plot the average age for different interarrival
time distributions when the service time is gamma with shape
parameter αS = 2, and rate parameter μ = 2. Unlike the case
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in the blocking discipline, deterministic interarrival times do
not result in the minimum age for all mean interarrival values.
We observe from Fig. 9(a) that there is a threshold, above
which deterministic interarrivals are optimum and below which
exponential interarrivals are optimum when the optimization is
over log-concave distributions. On the other hand, in Fig. 9(b),
we plot the same interarrival distributions for a gamma service
time with shape parameter αS = 0.5, and rate parameter
μ = 2. Here, irrespective of the mean interarrival time,
deterministic interarrivals are always optimum.

B. Age for General Interarrival and Exponential
Service Times

In this section, we consider general interarrival and expo-
nential service times in the preemption in service discipline.
We derive the exact age expression that can be written as a
summation of two terms, the first of which depends only on the
first and second moments of interarrival times and the second
of which depends only on the service rate. In other words,
interarrival and service times are decoupled. Average age takes
a simple representation as the sum of the age of the arrival
process and the mean service time. In addition, it is interesting
to see that the time an update spends in service, S̃ = S|S < Y ,
disappears from the age expression.

Theorem 5: Consider a G/M/1/1 system with preemption in
service, where Yn are i.i.d. interarrival times with a general
distribution and Sn are i.i.d. exponential service times with
rate parameter μ. The average age of this system is

Δp
G/M =

E[Y 2]
2E[Y ]

+
1
μ

. (17)

The proof of Theorem 5 is given in Section V-G. The age
expression in Theorem 5 is so simple that it only depends
on the first moment of the service time, and first and second
moments of the interarrival time. When the interarrivals are
exponential as well, (17) reduces to

Δp
M/M =

1
λ

+
1
μ

(18)

which is derived in [2].
We remark that the average age in (17) for preemption

in service discipline is smaller than that in (7) for blocking
discipline for all interarrival distributions. This result is also
reported in [11] that shows that over all service disciplines and
for exponential service times, preemption in service discipline
is optimal. We remind that this result does not generalize
when service times are not exponential (see the discussion
in Section IV-A).

Instead of optimizing age over service disciplines as in [11],
it is also possible to optimize age over the distributions of
interarrival and service times. In Corollary 2, we show that
deterministic interarrival times minimizes average age while
exponential interarrival times maximizes the minimum age.

Corollary 2: Consider a G/M/1/1 system with preemption in
service discipline, where Yn are i.i.d. interarrival times with a
general distribution, and Sn are i.i.d. exponential service times.
Deterministic interarrival times are age minimum over the
space of distributions with fixed mean. In addition, exponential

interarrival times result in the worst age when interarrival
distribution is log-concave.

Proof: For a given E[Y ], (17) is minimized when the sec-
ond moment, or equivalently, the variance of Y is minimized.
Since deterministic variables have zero variance, deterministic
interarrival times minimize the average age.

When Y has a log-concave distribution, we have the fol-
lowing relation between the first and second moments of Y
from [27, Proposition 6.A.6]

E[Y 2]
2E2[Y ]

≤ 1 (19)

where the equality is achieved with an exponential distribution.
Therefore, we conclude that exponential interarrivals result
in the largest possible E[Y 2]

2E[Y ] when Y has a log-concave
distribution. �

Exponential distribution results in the worst age among
all log-concave distributions due to its memoryless property.
A consequence of memoryless property is that the mean
residual life [27] of exponential distribution is the same as
its mean. For the case of preemption in service discipline,
mean residual life is related to how much the server waits
in idle mode after a service is completed. The longer this
waiting time is, the larger the average age will be. For any
other log-concave distribution, mean residual life is smaller
than the mean of the distribution. Therefore, when the mean
of the distribution is given and fixed, exponential distribution
has the largest mean residual life. Another consequence of
memoryless property is that the coefficient of variation (CV)
of exponential distribution is equal to one. CV is the ratio of
the standard deviation to the mean, or equivalently, the square
root of the left hand side of (19). It is a measure of dispersion
of a probability distribution. CV of the exponential distribution
is the largest (equals to 1) among all log-concave distributions,
and the smallest for deterministic distributions (equals to 0).
From this, we can conclude that the minimum average age
for preemption in service discipline is higher for distributions
with higher dispersion.

In Fig. 10, we consider gamma distributed interarrival times
where αY is the shape parameter and λ is the rate parameter,
and exponential service times where μ is the rate parameter.
In Fig. 10(a), we plot the average age with respect to λ when
αY and μ are fixed, and in Fig. 10(b), we plot the average
age with respect to μ when αY and λ are fixed. We observe
that the age decreases with both rate parameters. Fig. 10(a)
shows that smaller αY , smaller mean interarrival time and
smaller interarrival time variance result in a smaller average
age similar to the case in blocking discipline (see Fig. 5).
In addition, we observe from Fig. 10(b) that the lowest age is
achieved when the mean interarrival time is the smallest.

C. Age for Exponential Interarrival and General
Service Times

In this section, we consider exponential interarrival and gen-
eral service times, i.e., an M/G/1/1 system, with preemption
in service discipline. This system is considered in [10] as
well. In Theorem 6, we provide an alternative proof to [10]
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Fig. 10. AoI for G/M/1/1 with preemption in service discipline (a) with
respect to λ when μ = 2 and for several α, (b) with respect to μ for several
(α, λ) pairs.

that determines the age expression in Theorem 4 for an
exponential Y . Although this is a replication of a previous
result, it provides another affirmation that our approach is
applicable for many different cases.

Theorem 6: Consider an M/G/1/1 system with preemption
in service, where Yn are i.i.d. exponential interarrival times
with rate parameter λ and Sn are i.i.d. service times with a
general distribution. The average age of this system is

Δp
M/G =

1
λE[e−λS ]

. (20)

The proof of Theorem 6 is given in Section V-H. We refer
the reader to [10] for further analysis of M/G/1/1 systems.

D. Upper Bound for General Interarrival and Service Times

Our results in the previous sections provide exact age
expressions for single server and single packet in the sys-
tem queues with preemption in service discipline under dif-
ferent assumptions on the distributions of interarrival and
service times. Theorem 4 gives the most general result for

Fig. 11. AoI for G/G/1/1 with preemption in service discipline, where both
the interarrival and service times are gamma distributed, (a) αY = μ = 2,
(b) λ = μ = 2.

a G/G/1/1 system. In Corollary 3 below, we provide a simple
upper bound to (16) in Theorem 4.

Corollary 3: Consider a G/G/1/1 system with preemption
in service, where Yn are i.i.d interarrival times with a general
distribution and Sn are i.i.d. service times with a general dis-
tribution. The average age of this system is upper bounded by

Δp
G/G ≤E[Y 2]

2E[Y ]
+

E[Y ]E[F̄S(Y )]
1 − E[F̄S(Y )]

+ E[S̃] (21)

where F̄S(·) is the complementary cdf of S, and S̃ =S|S < Y .
The proof of Corollary 3 follows by noting that E[Y |

Y < S] ≤ E[Y ] and F̄S(Y ) = E[1{S>Y }|Y ]. The upper
bound in (21) is tight when K is independent of Yk. An exam-
ple of this is the multicast model in [24], where the random
sum parameter K is independent of Yk.

In order to examine the tightness of the bound in Corollary 3
for a general case, in Fig. 11, we simulate the same
G/G/1/1 system as in the case with blocking discipline, calcu-
late its age using Theorem 4 (unmarked lines in Fig. 11) and
compare it to the upper bound in Corollary 3 (cross marked
lines in Fig. 11). We observe that the difference between
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the exact age and the upper bound is bounded and small.
We also observe that the difference between the exact age
and the upper bound depends on the interarrival and service
time distributions.

V. CONCLUSION

Average age of status update systems has become an
important metric and a design tool for data communications.
However some previous results for status update systems with
exponential interarrival or service times do not generalize
to arbitrarily distributed interarrival and service times. For
example, we show in this paper that preemption in service
discipline is not always optimal when the service time dis-
tribution is not exponential. Considering real world wireless
network applications that have non-exponential characteristics,
in this paper, we considered average age of G/G/1/1 queues.
For both the blocking and preemption in service disciplines,
we derived the average age of G/G/1/1 queues as a function of
interarrival and service time distributions. We also obtained the
average age of G/M/1/1 queues as a special case. Finally, when
AoI is optimized over the distribution of the interarrival times,
we prove for the preemption in service discipline and numer-
ically observe for the blocking discipline that deterministic
interarrival times result in the minimum age and exponential
interarrival times result in the maximum age.

APPENDIX

A. Proof of Theorem 1

Remember from Section II-A that effective interarrival
times, Gn, can be written as random sums of random numbers;
see Fig. 2. Although K is not independent of all Yj , it is
possible to calculate the expected value of G using Wald’s
equation [26, Theorem 3.3.2], which is stated in Lemma 2
below.

Lemma 2 (Wald’s Eqn. [26, Theorem 3.3.2]): If Y1, Y2, . . .
are i.i.d. random variables having finite expectations, and K
is a stopping time for Y1, Y2, . . . such that E[K] < ∞, then

E

	
K�

k=1

Yk



= E[K]E[Y ]. (22)

Using Wald’s equation, we have E[G] = E[K]E[Y ]. Next,
we derive an expression for the second moment of the effective
interarrival times, E[G2]. Let us first define the indicator
function,

Ik =
�

1, if k ≤ K
0, if k > K. (23)

Now, we have

E[G2] = E

⎡
⎣� K�

k=1

Yk

�2
⎤
⎦ (24)

= E

⎡
⎣� ∞�

k=1

YkIk

�2
⎤
⎦ (25)

=
∞�

k=1

E[Y 2
k Ik] + 2

∞�
k=2

k−1�
j=1

E[YkIkYjIj ]. (26)

Note that, Ik = 1 if and only if we have not stopped
after successively observing Y1, . . . , Yk−1. Therefore, Ik is
determined by Y1, . . . , Yk−1, and is thus independent of Yk.
We have E[Y 2

k Ik] = E[Y 2
k ]E[Ik], and E[YkIkYjIj ] =

E[Yk]E[IkYjIj ], for j < k. Now, (26) becomes

E[G2] = E[Y 2]
∞�

k=1

E[Ik] + 2E[Y ]
∞�

k=2

k−1�
j=1

E[IkYjIj ]. (27)

First, let us calculate
∞�

k=1

E[Ik] =
∞�

k=1

Pr(K ≥ k) (28)

=
∞�

k=1

∞�
j=k

Pr(K = j) (29)

=
∞�

j=1

j�
k=1

Pr(K = j) (30)

=
∞�

j=1

jPr(K = j) (31)

=E[K]. (32)

Next, let us calculate

k−1�
j=1

E[IkYjIj ] =
k−1�
j=1

E[YjIk] (33)

= E

⎡
⎣
⎛
⎝k−1�

j=1

Yj

⎞
⎠ Ik

⎤
⎦ (34)

= E
�
Ak−11{Ak−1<S}

�
(35)

= E
�
E
�
Ak−11{Ak−1<S}|Ak−1

��
(36)

= E
�
Ak−1E

�
1{Ak−1<S}|Ak−1

��
(37)

= E
�
Ak−1F̄S(Ak−1)

�
(38)

where Ak−1 =
�k−1

j=1 Yj , and we used the fact that Ik = 1
implies that Ij = 1 for every j < k. Now, (27) becomes

E
�
G2
�

= E
�
Y 2
�
E[K] + 2E[Y ]

∞�
k=2

E[Ak−1F̄S(Ak−1)] (39)

= E
�
Y 2
�
E[K] + 2E[Y ]

∞�
k=1

E[AkF̄S(Ak)]. (40)

Inserting (40) and E[G] = E[K]E[Y ] into (4), we have

Δb
G/G =

E[Y 2]
2E[Y ]

+
�∞

k=1 E[AkF̄S(Ak)]
E[K]

+ E[S]. (41)

Now, let us write E[K] in terms of S and Y as

E[K] =
∞�

k=1

Pr(S > Ak−1) (42)

=
∞�

k=0

Pr(S > Ak) (43)

=1 +
∞�

k=1

E[F̄S(Ak)]. (44)

Finally, inserting (44) into (41), we have (5).
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B. Proof of Lemma 1

Let us start with Pr(K = k) in (6) as,

Pr(K = k) =Pr

⎛
⎝k−1�

j=1

Yj ≤ S <

k�
j=1

Yj

⎞
⎠ (45)

=E

⎡
⎣F̄S

⎛
⎝k−1�

j=1

Yj

⎞
⎠− F̄S

⎛
⎝ k�

j=1

Yj

⎞
⎠
⎤
⎦ (46)

=E
�
e−μ(�k−1

j=1 Yj) − e−μ(�k
j=1 Yj)

�
(47)

=
�
E
�
e−μY

��k−1 − �E �e−μY
��k

(48)

=
�
E
�
e−μY

��k−1 �
1 − E

�
e−μY

��
, (49)

which shows that K is geometric with p = 1 − E
�
e−μY

�
.

C. Proof of Theorem 2

Let us start with calculating the middle term on the right
hand side of (5) for an exponential S. First, note that the
denominator is E[K] (see (41) and (44)). Due to Lemma 1,
K is geometric with p = 1−E

�
e−μY

�
when S is exponential

with rate μ. Therefore, we have E[K] = 1
1−E[e−µY ]

. Next, let
us consider the numerator. We have

∞�
k=1

E[AkF̄S(Ak)] =
∞�

k=1

E

⎡
⎣
⎛
⎝ k�

j=1

Yj

⎞
⎠ e−μ(�k

j=1 Yj)

⎤
⎦ (50)

=
∞�

k=1

E

⎡
⎣
⎛
⎝ k�

j=1

Yj

⎞
⎠ k�

j=1

e−μYj

⎤
⎦ (51)

=
∞�

k=1

k�
j=1

E

⎡
⎣Yje

−μYj

k�
j′ �=j

e−μYj′

⎤
⎦ (52)

=
∞�

k=1

k�
j=1

E
�
Yje

−μYj
� �

E[e−μY ]
�k−1

(53)

=E
�
Y e−μY

� ∞�
k=1

k
�
E[e−μY ]

�k−1
(54)

=
E
�
Y e−μY

�
(1 − E[e−μY ])2

(55)

where in (55), we used the fact that E[e−μY ] < 1. Since
e−μY < 1 for every realization of Y except a single point,
Y = 0, which has probability zero. Finally, inserting (55) into
(5) with E[K] = 1

1−E[e−µY ] , we have (7).

D. Proof of Corollary 1

First, note that

E[Y |Y < S]Pr(Y < S) = E
�
Y 1{Y <S}

�
(56)

= E
�
E
�
Y 1{Y <S}|Y

��
(57)

= E
�
Y E

�
1{Y <S}|Y

��
(58)

= E
�
Y F̄S(Y )

�
. (59)

Now, consider the middle term on the right hand side of (7).
For an exponential S, we have E[Y e−μY ] = E[Y F̄S(Y )],
which using (59), can be written as

E[Y e−μY ] = E[Y |Y < S]Pr(Y < S) (60)

For an exponential S, we also have 1−E[e−μY ] = Pr(Y > S).
Now, the middle term on the right hand side of (7) can be
written as

E[Y e−μY ]
1 − E[e−μY ]

=
E[Y |Y < S]Pr(Y < S)

Pr(Y > S)
(61)

When S is exponential, Y is nonnegative and S is independent
of Y , we have

E[S] = E[S − Y |S > Y ] (62)
= E[S|S > Y ] − E[Y |S > Y ] (63)

due to the memoryless property of the exponential distribution.
By pulling E[Y |S > Y ] from (63) and inserting it into (61),
we have

E[Y e−μY ]
1−E[e−μY ]

=
E[S|S>Y ]Pr(S >Y )−E[S](1−Pr(Y >S))

Pr(Y >S)
(64)

=
E[S|S >Y ]Pr(S >Y )−E[S]+E[S]Pr(Y >S)

Pr(Y >S)
(65)

We know that

E[S] = E[S|S<Y ]Pr(S <Y ) + E[S|S >Y ]Pr(S >Y ) (66)

Using (66), (65) becomes

E[Y e−μY ]
1 − E[e−μY ]

=
−E[S|S < Y ]Pr(S < Y ) + E[S]Pr(Y > S)

Pr(Y > S)
(67)

= −E[S|S < Y ] + E[S] (68)

By inserting (68) into (7) and noting that E[S] = 1
μ ,

we have (9).

E. Proof of Theorem 3

First, note that

E[Ak|Ak < S]Pr(Ak < S) = E
�
Ak1{Ak<S}

�
(69)

= E
�
E
�
Ak1{Ak<S}|Ak

��
(70)

= E
�
AkE

�
1{Ak<S}|Ak

��
(71)

= E
�
AkF̄S(Ak)

�
. (72)

Now, consider the middle term on the right hand side of (5).
Using (72), the numerator can be written as

∞�
k=1

E[AkF̄S(Ak)] =
∞�

k=1

E [Ak|Ak < S] Pr(Ak < S) (73)

=
∞�

k=1

� ∞

0

yPr(Ak < S|Ak = y)fAk
(y)dy

(74)

=ES

	� S

0

∞�
k=1

yfAk
(y)dy



. (75)

Note that Ak is a sum of k exponentials, which has an Erlang
distribution. Using the density of Erlang distribution with rate
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parameter λ and shape parameter k, we have
∞�

k=1

yfAk
(y) =

∞�
k=1

y
λkyk−1e−λy

(k − 1)!
(76)

=λye−λy
∞�

k=1

λk−1yk−1

(k − 1)!
(77)

=λye−λy
∞�

k=0

(λy)k

k!
(78)

=λye−λyeλy (79)
=λy (80)

where we used the power series expansion of the exponential
function ex =

�∞
k=0

xk

k! . Now, (75) becomes

∞�
k=1

E[AkF̄S(Ak)] =ES

	� S

0

λydy



(81)

=
λES [S2]

2
. (82)

Finally, for an exponential Y , we know that G = Y + S.
Using the fact that E[G] = E[K]E[Y ], we obtain E[K] =
E[Y ]+E[S]

E[Y ] . Inserting E[K] and (82) into (5), we have (13).

F. Proof of Theorem 4

Remember from Section II-B that the effective interarrival
time, G =

�K
k=1 Yk is a random sum of random numbers,

where K is a geometric random variable. From Lemma 2,
we have E[G] = E[K]E[Y ]. Next, we derive an expression
for the second moment of the effective interarrival times,
E[G2]. Let us first use the indicator function in (23) and the
expansion of E[G2] in (26). Similar to the case of blocking
discipline, here, Ik is independent of Yk as well, and therefore,
we have (27). Let us consider

k−1�
j=1

E[IkYjIj ]=
k−1�
j=1

E[Yj |Ik = 1]Pr(Ik = 1) (83)

= (k − 1)E[Y |Y < S]E[Ik] (84)

where we used the fact that Ik = 1 implies Yj < S for j < k.
Now, E[G2] becomes

E[G2]=E[Y 2]E[K]+2E[Y ]E[Y |Y<S]
∞�

k=2

(k−1)E[Ik] (85)

where
�∞

k=1 E[Ik] = E[K] is shown in (32). Now, let us
calculate

∞�
k=2

(k − 1)E[Ik] =
∞�

k=1

(k − 1)Pr(K ≥ k) (86)

=
∞�

k=1

∞�
j=k

(k − 1)Pr(K = j) (87)

=
∞�

j=1

j�
k=1

(k − 1)Pr(K = j) (88)

=
∞�

j=1

Pr(K = j)
j�

k=1

(k − 1) (89)

=
∞�

j=1

(j − 1)j
2

Pr(K = j) (90)

=
1
2
E[K(K − 1)]. (91)

Thus, we have

E[G2] =E[Y 2]E[K] + E[Y ]E[Y |Y < S]E[K(K − 1)]. (92)

Next, using (59), the average age can be written as

Δp
G/G =

E[Y 2]
2E[Y ]

+ E[Y F̄S(Y )]
E[K(K − 1)]
2E[K](1 − p)

+ E[S̃]. (93)

Since K is geometric with p = 1 − E[F̄S(Y )], we have

E[K(K − 1)]
2E[K]

=
2−p
p2 − 1

p
2
p

=
1 − p

p
. (94)

Inserting (94) into (93), we have (16).

G. Proof of Theorem 5

Let us start by re-writing (16) using (59) and the definition
of S̃

Δp
G/G =

E[Y 2]
2E[Y ]

+
E[Y |Y <S]Pr(Y <S)

Pr(S <Y )
+ E[S|S <Y ]. (95)

We know that

E[S] = E[S|S <Y ]Pr(S <Y ) + E[S|S >Y ]Pr(S >Y ). (96)

By pulling E[S|S < Y ] from (96) and inserting it into (95),
we have

Δp
G/G =

E[Y 2]
2E[Y ]

+
E[Y |Y <S]Pr(Y <S)

Pr(S <Y )

+
E[S]−E[S|S>Y ]Pr(S >Y )

Pr(S <Y )
(97)

=
E[Y 2]
2E[Y ]

+
E[S] − E[S − Y |S > Y ]Pr(S > Y )

Pr(S < Y )
. (98)

When S is exponential, Y is nonnegative and S is independent
of Y , E[S] = E[S − Y |S > Y ] due to the memoryless
property of the exponential distribution. Then, (98) becomes

Δp
G/M =

E[Y 2]
2E[Y ]

+
E[S] (1 − Pr(S > Y ))

Pr(S < Y )
(99)

=
E[Y 2]
2E[Y ]

+ E[S] (100)

which gives (17) by noting that E[S] = 1
μ .

H. Proof of Theorem 6

Let us start by re-writing (16) as

Δp
G/G =

E[Y 2]
2E[Y ]

+
E[Y |Y <S]Pr(Y <S)

Pr(S <Y )
+E[S|S<Y ]. (101)

For an exponential Y , we can calculate

E[Y |Y < S]Pr(Y < S) =
� ∞

0

yPr(Y < S|Y = y)fY (y)dy

(102)

=ES

	� S

0

yλe−λydy



(103)

=
1 − E[e−λS ]

λ
− E[Se−λS ]. (104)
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We know that Pr(S < Y ) = F̄Y (S) = E[e−λS ]. Finally,
E[S|S < Y ] can be calculated as

E[S|S < Y ] =
� ∞

0

s
Pr(S < Y |S = s)

Pr(S < Y )
fS(s)ds (105)

=
E[Se−λS ]
E[e−λS ]

. (106)

Inserting (104) and (106) into (101) gives (20).
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