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Abstract—We consider an RNN-based traffic volume predic-
tion, which is a critical problem for network slice management
and resource allocation in slicing-enabled next generation cellular
networks. We propose to use a novel cost function that takes
SLA violations into account. Our approach is multivariate and
spatio-temporal in three aspects. First, we consider the effects of
several other RAN features in a cell besides the traffic volume.
Second, we introduce feature vectors based on peak hours of the
day and days of the week. Third, we introduce feature vectors
based on incoming handover statistics from the neighboring cells.
Our results show about 60% improvement over MAE-based
univariate LSTM models and about 20% improvement over SLA-
based univariate models.

I. INTRODUCTION

Cellular service providers need to transform their existing
network design and operation approaches in order to meet
various service demands of different verticals in 5G and
beyond networks. Service-specific design and integration of
key enablers such as network slicing, private networks and
edge computing have increased the complexity of networks.
Machine Learning (ML) methods can deal with this com-
plexity and make the next generation cellular networks more
robust, predictive, autonomous, and reliable [1]. The works in
[2], [3] provide detailed surveys for studies on various deep
learning applications in different domains of mobile networks
by considering both today’s challenges and future perspectives.

Traditionally, time-series problems similar to traffic volume
prediction were handled by versions of Autoregressive Inte-
grated Moving Average (ARIMA) models [4]. For example,
[5] divides the time series mobile traffic volume data into a
regular component and a random component. They predict
the regular component using ARIMA and report an error
of 30% on the regular component. They argue that random
component cannot be predicted. However, recent years have
seen a large number of works that apply ML methods to
traffic volume prediction and perform significantly better than
ARIMA models.

ML methods for cellular traffic prediction are centered
around Convolutional Neural Network (CNN) and Recurrent
Neural Network (RNN) based models. While CNNs are argued
to capture the spatial correlation, RNNs are used for time-
series data due to their cyclical architecture in which current
output is related to the previous outputs. Traditional RNNs are
insufficient for problems involving long-term dependency. For

this reason, Long Short-Term Memory (LSTM) based RNN
models that have more complex structure has been proposed.
Although the learning capacity of LSTM has become superior
using this complex structure, the computational load has
increased due to additional parameters. For this reason, Gated
Recurrent Unit (GRU) based RNN models with a simpler
structure and a smaller number of parameters were proposed.

In this study, we focus on sector and carrier-based downlink
(DL) traffic volume prediction of base stations (eNodeBs)
using LSTM and GRU models. Our dataset is collected from
a real and live LTE network operating in a highly dense urban
area. In addition to DL traffic volume, the dataset includes
several other Radio Access Network (RAN) features as well.
Moreover, we introduce new Boolean feature sets to emphasize
the busy hours of the day and the days of the week. Finally, in
order to manage the spatio-temporal effect and the interaction
of cells among themselves, we propose a new handover-based
feature.

Network traffic data has spatial and temporal dependencies
due to interactions between eNodeBs and daily/weekly trends
in mobile data usage, respectively. In the literature, a line
of research (e.g., [6]–[10]) considers CNN-based models to
exploit spatial dependency. Of these, [6]–[8] utilize 3D-CNN
structure that is borrowed from video processing applications.
They assume that inputs at a given time are in a matrix
form. Each entry of the input matrix is the aggregated traffic
of eNodeBs that are in a corresponding square grid area.
We believe that correlation structures between color intensity
levels of neighboring pixels in an image and between data
traffic levels of neighboring eNodeB sectors are significantly
different. Data volume at a neighboring cell might affect
the data volume at the intended cell if there is handover or
interference between the cells. Using similar arguments against
the grid structure, [9], [10] use graph convolutional networks
(GCNs). In [9], the authors combine LSTM with GCNs for
multi-step ahead prediction. Although their multi-step ahead
results are much better, for the special case of one-step ahead
prediction, their proposed model performs worse than vanilla
LSTM and about the same as ARIMA. In addition to GCNs,
[10] proposes to use handover data to improve performance.
Mean Square Error (MSE) and Mean Absolute Error (MAE)
results in [10] are 10-15% better than vanilla LSTM results.

Another line of research (e.g., [11]–[15]) considers RNN-
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Fig. 1. Cells in a highly-dense urban area.

based models to exploit temporal dependency. Since the end
goal in [14], [15] is to optimize resource allocation using the
predicted traffic, it is difficult to evaluate the performance of
the network traffic prediction. On the other hand, [11], [12]
also use a grid structure similar to [6]–[8]. Finally, [13] uses a
private dataset and cell-clustering based on similarity of time-
series trends.

To the best of our knowledge, this paper is the first work in
the literature that exploits additional RAN data, peak hours in
a day and days of the week to improve prediction performance.
Moreover, unlike [10] where the transition probability matrix
of the handover graph is used for graph convolutions, we use
handover rates as a feature for our RNN models.

In addition, we propose a Service-Level Agreements (SLA)
violation-based cost function. Traditional loss functions, like
MSE and MAE, are not suitable for mobile operators. It is
crucial for an operator to maximize resource utilization while
avoiding any SLA violations. Although [8] uses a similar cost
function, their analysis is CNN-based, univariate and limited
to traffic volume only.

We compare our results to ARIMA, MAE-based univari-
ate LSTM, SLA-based univariate LSTM methods. When all
features proposed in this paper are considered, spatio-temporal
multivariate LSTM method performs 67% better than ARIMA,
62% better than MAE-based univariate LSTM, and about 20%
better than SLA-based univariate LSTM.

II. NETWORK ARCHITECTURE

This study considers RAN domain of a real-world LTE
network operating in a highly dense urban area. As illustrated
in Fig. 1, the network consists of eNodeBs having different
number of sectors and carriers. Each eNodeB is represented by
two letters throughout this study, e.g., GU, VO, SY, and ME.
The sector and carrier number of the corresponding eNodeB
are represented by two digits. For instance, GU14 denotes the
first sector and fourth carrier of the eNodeB GU. In this study,
we refer to a single carrier in a sector as a cell, e.g., GU14,
GU12, VO14, and SY24.

Mobility is high in the area under consideration and there
are unexpected increases in traffic demand especially in the
afternoon. This is a region where shopping and business

Fig. 2. Architecture of our method

centers are located. Therefore, dynamically changing service
demands pose challenges such as SLA violation and resource
over-provisioning.

We can predict the traffic volume of an eNodeB either
at the eNodeB level (aggregated over sectors and carriers),
sector level (aggregated over carriers) or single carrier level.
Aggregated eNodeB or sector-based traffic pattern analysis can
be inefficient, especially in very crowded areas with dynamic
user mobility. Each sector or carrier of an eNodeB may not be
correlated with each other. Therefore, we consider deploying
a model that will learn the cell-based traffic pattern.

III. CELLULAR TRAFFIC PREDICTION

This study proposes a method that can be integrated into any
live network. We train the ML model in our proposed method
with time-series data that is extracted from the network. This
method provides its prediction results directly to the relevant
nodes or third party Self-Optimizing Network (SON) module.
Fig. 2 illustrates the overall method that is integrated into live
network data of eNodeBs. The method provides the traffic
prediction in five main steps.

1. Data Collector: The dataset is collected from the Opera-
tions Support System (OSS) database of a live LTE network by
using the operator-specific scripts. These scripts have unique
formulas to calculate the values of specific RAN features by
using counters. The dataset contains twenty RAN features
that we selected after our technical discussions with network
experts of the operator. Feature names are all beginning with a
prefix that contains the measurement family name [16], [17].
For each cell (a sector in a carrier of an eNodeB), these
features are recorded hourly for six months.

2. Data Preprocessor: The collected data includes all
RAN feature values for sectors and carriers of all eNodeBs
in the region in a single time axis. First, we organize the
dataset based on cells. Then, we examine feature-based NULL
statistics in the data of all cells and exclude the cells that
contain more than a certain threshold of NULL elements from
the scope of the problem. Next, the NULL elements in the
remaining dataset are interpolated with a method based on the
statistics of the relevant cell. Finally, we analyze all feature
values statistically in order to check for an anomaly.
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TABLE I
FEATURE LABELS AND ABBREVIATIONS

Feature label Abbreviated feature name
F1 Nof ERAB Estab Attempt
F2 RACH Setup Succ PC
F3 Avg RACH TA
F4 NOF RRC ATT
F5 Nof S1 Sig EstabAtt
F6 DL PDCP Cell Thput Mbps
F7 UL PDCP Cell Thput Mbps
F8 DL PDCP User Thput Mbps
F9 UL PDCP User Thput Mbps
F10 DL Traffic Volume Mbyte
F11 UL Traffic Volume Mbyte
F12 Avg UL RSSI Weigh dBm PUCCH
F13 Avg UL RSRP PUSCH
F14 Avg UL RSRP PUCCH
F15 Avg CQI
F16 Avg Active Users DL
F17 Avg Active Users UL
F18 Nof Avg SimRRC ConnUsr
F19 DL PRB Util
F20 UL PRB Util

3. Feature Producer: Table I shows the labels used for all
features that we consider throughout this study. Fig. 3 illus-
trates the correlation heatmap for cell GU14. The darker the
color in Fig. 3, the higher the correlation is between features.
Since we focus on the prediction of feature F10, we examine
the correlation of other features with F10. Instead of using all
the features in the dataset, we apply a correlation threshold
of 95% to decrease the dimensionality of the problem. As a
result, in addition to feature F10, we include features F16,
F17, F18, and F19 to our training set.

The feature producer also focuses on detailed analyses
regarding the periodicity of features. We observe that DL
traffic volume data in a cell has a 24-hour periodicity with a
period of high volume during peak hours. In addition, there are
statistical differences between weekday and weekend traffic
patterns. Therefore, we include two Boolean feature vectors
to our feature set. The first one is to differentiate peak hours
from non-peak hours based on a daily peak hour statistical
analysis. The second one is to differentiate a weekday from a
weekend day. As a result, we highlight the peak hours of traffic
volume in each day and weekdays/weekends. This allows the
model to increase the prediction accuracy.

Another feature that we consider is based on handovers
between cells. If we include the data from all cells in order
to optimize the prediction in one cell, the complexity of the
problem increases significantly. Therefore, we only consider
traffic volume data of a cluster of cells around the cell under
consideration. However, there is not any positive affect on the
prediction performance if we choose the cells in the cluster
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Fig. 3. Correlation heatmap of RAN features for GU14 cell.

TABLE II
THE RATES OF INCOMING HANDOVERS TO GU14

Cell Handover percentage
GU12 71.97
VO14 7.49
SY24 4.80
VO12 4.17
ME34 3.57
GU24 2.48
ME32 1.85
SY22 1.40
SY34 0.79

depending only on proximity and/or intersection of coverage.
On the other hand, we observe an increase in performance
when we include cells with high handover percentage in the
cluster. As a result, the proposed handover-based clustering
feature uses the statistics of incoming handovers from neigh-
boring cells. First, we calculate the ratio of incoming handover
number to the total number of handovers. Then, we create a
cluster with those cells above a pre-defined threshold value. As
an example, Table II illustrates handover statistics for GU14.
We observe that the highest rate of incoming handovers is
from GU12. If we choose the handover threshold to be 5%,
handover-based clustering for GU14 includes GU14, GU12,
and VO14.

4. Hyperparameter Tuner: We structure the data to form
sequential samples with a sliding window method. The sliding
window is designed to predict the value at the next hour using
past values based on the window size. After evaluating the
performance results, we observe that the optimum window
size is 24. This means that each prediction is based on the
traffic data of the past 24 hours.

We split the dataset into training, validation, and test sets
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Fig. 4. SLA-based cost functions for different α values.

with the lengths of 18 weeks, 5 weeks, and 3 weeks, respec-
tively. Then, we normalize feature sets by using the mean and
standard deviation values calculated based on the training set.
Next, using a grid search, we optimize the hyperparameters,
such as learning rate, epoch number, L2 regularization penalty,
LSTM or GRU layer number and hidden unit number. Finally,
we choose the Initializer type to be Random normal or Glorot
normal.

We analyze the performance of our ML models using a
custom loss function. We use a modified version of the SLA-
based cost function that is defined in [8]

L(x̂− x) =

 α− ε(x̂− x), when (x̂− x) ≤ 0
α− 1

ε (x̂− x), when 0 < (x̂− x) < εα
α(x̂− x)− εα, when εα ≤ (x̂− x)

where ε and α are the parameters of the function, and x and x̂
represent the normalized actual traffic volume at a given time
and its prediction using past values, respectively. As a result,
(x̂− x) > 0 means overprovisioning and (x̂− x) < 0 means
SLA violation. Fig. 4 plots the cost function for ε = 0.05 and
α = 1, 3, and 5. We can see from Fig. 4 that our cost function
penalizes underestimation more strictly than overestimation
since underestimation results in SLA violations that have
monetary consequences for the operator.

5. Predictor: We consider a multivariate dataset with di-
mensions T × F , where T is the number of time stamps and
F is the number of features. The value of F depends on the
correlation and handover threshold. Let us consider cell GU14
with 95% correlation and 5% handover threshold. Then, we
have five RAN features over 95% correlation threshold, and
two traffic volume feature vectors from incoming cells with
more than 5% handover rate. In addition, we have two Boolean
features for peak hours and weekends. In total, we have nine
input features, while the output is the predicted value of F10.

TABLE III
MODEL PERFORMANCE COMPARISON

Models SLA-based cost
ARIMA 2.6300
MAE-based LSTM 2.3017
SLA-based LSTM 1.0764
mvLSTM-1 0.9582
mvLSTM-2 0.9882
mvLSTM-3 1.0169
mvLSTM-C 0.8737
mvGRU-1 0.9396
mvGRU-2 0.9711
mvGRU-3 0.9945
mvGRU-C 0.8781

IV. RESULTS

This section evaluates the performance of proposed mul-
tivariate LSTM and GRU models. Table III illustrates the
SLA-based cost values of all models. We see that MAE-based
univariate LSTM model performs very poorly and almost as
bad as ARIMA when the performance metric is the SLA-based
cost function. Using this justification, we use the SLA-based
cost for the loss function in the remaining models in Table III.
We consider SLA-based univariate LSTM model to be the
baseline for our multivariate spatio-temporal models.

Our first multivariate model, mvLSTM-1, includes features
F16 through F19 in addition to F10 to predict the future values
of F10. This provides about 10% performance increase with
respect to SLA-based univariate LSTM. The next multivariate
model, mvLSTM-2, includes days of the week and peak hours
feature vectors in addition to F10. The additional features in
mvLSTM-2 are derived from the statistics of F10 and therefore
mvLSTM-2 does not require any additional measurements be-
sides F10. Since the performance of mvLSTM-2 is very similar
to the one of mvLSTM-1, it can be a suitable alternative if
other measurements are not available. The third multivariate
model, mvLSTM-3, includes the traffic volume of the cells
with large handover rates to the cell under consideration. The
performance of this model is about 6% better than SLA-based
univariate LSTM. Finally, we combine all features together
in mvLSTM-C model whose performance is about 20% better
than SLA-based univariate LSTM model and about 60% better
than MAE-based univariate LSTM. We can also see from
Table III that GRU based models perform very close to LSTM
based models. However, they require a smaller number of
parameters.

Actual and predicted DL traffic volumes are plotted in
Fig. 5 for MAE-based univariate LSTM model and in Fig. 6
for SLA-based mvLSTM-C model. The prediction curve in
Fig. 5 seems to follow the actual data more closely than the
prediction curve in Fig. 6. On the other hand, error lines in
Fig. 5 show significant SLA violations while there are very
few SLA violations in Fig. 6. In general, MAE-based LSTM
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Fig. 5. Actual traffic, predicted traffic, and error values for MAE-based
univariate LSTM model. Red lines are SLA violations.

models result in SLA violations about half of the time and lag
the actual traffic at peak hours. For SLA-based LSTM models,
it is possible to adjust the level of SLA violations by tuning
the parameter α.

V. CONCLUSION

In this paper, we propose SLA-based multivariate LSTM
models that focus on DL traffic volume prediction of a specific
sector and carrier of an eNodeB. The dataset is collected
from a real and live LTE network operating in a highly
dense urban area. When compared to MAE-based models,
SLA-based models provide the operator the freedom to set
the amount of SLA violations and to avoid associated SLA
violation fees. This is particularly important for network slice
management, since different slices might have different SLAs.
Our future work includes predicting multiple steps ahead in
addition to the next hour prediction, optimizing multiple cells
at the same time, and investigating the effects of correlation
and handover percentage thresholds.
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